已函數(shù)是定義在上的奇函數(shù),在上時
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)解不等式.
(Ⅰ);(Ⅱ)[0,1]
解析試題分析:(Ⅰ)由奇函數(shù)及在[0,1]上的解析式可得函數(shù)在[-1,0]上的解析式.從而即可得在[-1,1]上的解析式.本小題主要是考查分段函數(shù)的解析式問題.
(Ⅱ)由題意可知函數(shù)f(x)在[-1,1]上是遞增函數(shù).又因為函數(shù)f(x)是奇函數(shù).所以通過可得.所以可得.從而可解得結(jié)論.本小題關(guān)鍵是通過函數(shù)的單調(diào)遞增把函數(shù)值的大小轉(zhuǎn)化為自變量的大小比較.
試題解析:(Ⅰ)設(shè).則.所以.又f(x)是奇函數(shù).所以f(-x)="-f(x).f(x)=-f(-x)=" .所以.
(Ⅱ)易知f(x)是[-1,1]上增函數(shù).由已知得.等價于.所以不等式的解集為[0,1].
考點:1.分段函數(shù).2.函數(shù)的單調(diào)性.3.函數(shù)的奇偶性.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知冪函數(shù)的圖象經(jīng)過點.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)判斷函數(shù)在區(qū)間上的單調(diào)性,并用單調(diào)性的定義證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若的定義域為R,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)用定義證明在上單調(diào)遞增;
(2)若是上的奇函數(shù),求的值;
(3)若的值域為D,且,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù),如果對任意,恒有(,)成立,則稱為階縮放函數(shù).
(1)已知函數(shù)為二階縮放函數(shù),且當(dāng)時,,求的值;
(2)已知函數(shù)為二階縮放函數(shù),且當(dāng)時,,求證:函數(shù)在上無零點;
(3)已知函數(shù)為階縮放函數(shù),且當(dāng)時,的取值范圍是,求在()上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù)滿足:①對任意都有:;②當(dāng)時,,回答下列問題.
(1)證明:函數(shù)在上的圖像關(guān)于原點對稱;
(2)判斷函數(shù)在上的單調(diào)性,并說明理由.
(3)證明:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com