3.已知圓心在x軸正半軸上的圓C與直線5x+12y+21=0相切,與y軸交于M,N兩點(diǎn),且∠MCN=120°.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P(0,2)的直線l與圓C交于不同的兩點(diǎn)A,B,若設(shè)點(diǎn)G為△MNG的重心,當(dāng)△MNG的面積為$\sqrt{3}$時(shí),求直線l的方程.

分析 (1)可設(shè)圓C的方程為(x-a)2+y2=4a2,點(diǎn)C到直線5x+12y+21=0的距離為$d=\frac{|5a+21|}{13}=2a$,求出a,即可求圓C的標(biāo)準(zhǔn)方程;
(2)利用△MNG的面積為$\sqrt{3}$,得出|xG|=1,設(shè)A(x1,y1),B(x2,y2),則${x_G}=\frac{{{x_1}+{x_2}+0}}{3}$,即x1+x2=3xG,直線方程與圓的方程聯(lián)立,即可得出結(jié)論.

解答 解:(1)由題意知圓心C(a,0),且a>0,
由∠MCN=120°,知Rt△MCO中,∠MCO=60°,|OC|=a,則|CM|=2a,
于是可設(shè)圓C的方程為(x-a)2+y2=4a2…(2分)
又點(diǎn)C到直線5x+12y+21=0的距離為$d=\frac{|5a+21|}{13}=2a$,
所以a=1或$a=-\frac{21}{31}$(舍),
故圓C的方程為(x-1)2+y2=4.…(4分)
(2)△MNG的面積$S=\frac{1}{2}|MN||{x_G}|=\sqrt{3}|{x_G}|=\sqrt{3}$,所以|xG|=1.
若設(shè)A(x1,y1),B(x2,y2),則${x_G}=\frac{{{x_1}+{x_2}+0}}{3}$,即x1+x2=3xG,…(6分)
當(dāng)直線l斜率不存在時(shí),△ABO不存在,
故可設(shè)直線l為y=kx+2,代入圓C的方程(x-1)2+y2=4中,
可得(1+k2)x2+(4k-2)x+1=0,…(8分)
則$\left\{\begin{array}{l}△>0\\{x_1}+{x_2}=\frac{2-4k}{{1+{k^2}}}\end{array}\right.$,即$\left\{\begin{array}{l}k<0或k>\frac{4}{3}\\{x_1}+{x_2}=\frac{2-4k}{{1+{k^2}}}=±3\end{array}\right.$…(10分)
得k=-1或$k=-\frac{1}{3}$,
故滿足條件的直線l的方程為y=-x+2或$y=-\frac{1}{3}x+2$.…(12分)

點(diǎn)評(píng) 本題考查圓的方程,考查直線與圓的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=log3$\frac{x-1}{x+1}$,g(x)=-2ax+a+1,h(x)=f(x)+g(x).
(Ⅰ)當(dāng)a=-1時(shí),證明:h(x)為奇函數(shù);
(Ⅱ)若關(guān)于x的方程f(x)=log3[g(x)]有兩個(gè)不等實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a>0,b>0,若a+b=1,則$\frac{1}{a}+\frac{4}$的最小值為(  )
A.8B.9C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow$=(3,4),$\overrightarrow{a}$•$\overrightarrow$=-3,則向量$\overrightarrow{a}$在向量$\overrightarrow$的方向上的投影是-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.一個(gè)空間幾何體的三視圖(單位:cm)如圖所示,則該幾何體的表面積為30+6$\sqrt{5}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.$\frac{1-2i}{2+i}$=( 。
A.-iB.iC.1D.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在直三棱柱ABC-A1B1C1中,AB=BC=1,AC=$\sqrt{2}$,BB1=2,點(diǎn)M為BB1的中點(diǎn),則點(diǎn)A到平面A1CM距離為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在三棱錐P-ABC中,PA⊥PC,PB=AB=BC=2,∠ABC=120°,$PC=\sqrt{3}$,D為AC上一點(diǎn),且AD=3DC.
(1)求證:PD⊥平面ABC;
(2)若E為PA中點(diǎn),求直線CE與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|x+b2|-|-x+1|,g(x)=|x+a2+c2|+|x-2b2|,其中a,b,c均為正實(shí)數(shù),且ab+bc+ac=1.
(Ⅰ)當(dāng)b=1時(shí),求不等式f(x)≥1的解集;
(Ⅱ)當(dāng)x∈R時(shí),求證f(x)≤g(x).

查看答案和解析>>

同步練習(xí)冊(cè)答案