【題目】已知命題p:指數(shù)函數(shù)R上是單調減函數(shù);命題q:關于x的方程有實根,

1)若p為真,求a的范圍

2)若q為真,求的范圍

3)若pq為真,pq為假,求實數(shù)a的范圍.

【答案】1;(2;(3

【解析】

1)根據(jù)指數(shù)函數(shù)的單調性,即可求出命題為真時的取值范圍;

2)利用判別式,求出命題為真時的取值范圍;

3)根據(jù)題意知,一真一假,求出假和真時的取值范圍,再取并集.

解:(1)命題p:指數(shù)函數(shù)R上是單調減函數(shù);

p為真,則,解得,

a的取值范圍是:;

2)命題q:關于x的方程有實根,

q為真,則

解得:,

a的取值范圍是;

3)若pq為真,pq為假,則pq一真一假;

pq假時,,解得:;

pq真時,,解得:;

綜上,實數(shù)a的取值范圍是:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為踐行綠水青山就是金山銀山的國家發(fā)展戰(zhàn)略,我市對某轄區(qū)內畜牧、化工、煤炭三類行業(yè)共200個單位的生態(tài)環(huán)境治理成效進行了考核評估,考評分數(shù)達到85分及其以上的單位被稱為環(huán)保單位,未達到85分的單位被稱為環(huán)保單位.現(xiàn)通過分層抽樣的方法確定了這三類行業(yè)共20個單位進行調研,統(tǒng)計考評分數(shù)如下:

畜牧類行業(yè):85,92,7781,8987

化工類行業(yè):79,77,9085,83,91

煤炭類行業(yè):87,89,76,8475,9490,88

1)計算該轄區(qū)這三類行業(yè)中每類行業(yè)的單位個數(shù);

2)若從畜牧類行業(yè)這六個單位中,再隨機選取兩個單位進行生產效益調查,求選出的這兩個單位中既有環(huán)保單位,又有環(huán)保單位的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)求的單調區(qū)間;

(2)若上成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足,其中是數(shù)列的前項和.

1)若數(shù)列是首項為,公比為的等比數(shù)列,求數(shù)列的通項公式;

2)若,求數(shù)列的通項公式;

3)在(2)的條件下,設,求證:數(shù)列中的任意一項總可以表示成該數(shù)列其他兩項之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某汽車生產企業(yè)上年度生產一品牌汽車的投入成本為10萬元/輛,出廠價為14萬元/輛,年銷售量為輛.本年度為適應市場需求,計劃提高產品檔次,適當增加投入成本,若每輛車投入成本增加的比例為(01),則出廠價相應提高的比例為0.6,年銷售量也相應增加.已知年利潤=(每輛車的出廠價-每輛車的投入成本)×年銷售量.

1)若年銷售量增加的比例為0.5,為使本年度的年利潤比上年度有所增加,則投入成本增加的比例應在什么范圍內?

2)若年銷售量關于的函數(shù)為為常數(shù)),則當為何值時,本年度的年利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線為參數(shù)),曲線為參數(shù)).

(1)設相交于兩點,求;

(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線的距離的最大時,點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,側面為等邊三角形,且垂直于底面, ,分別是的中點.

1)證明:平面平面;

2)已知點在棱上且,求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在學習強國活動中,某市圖書館的科技類圖書和時政類圖書是市民借閱的熱門圖書.為了豐富圖書資源,現(xiàn)對已借閱了科技類圖書的市民(以下簡稱為“問卷市民”)進行隨機問卷調查,若不借閱時政類圖書記1分,若借閱時政類圖書記2分,每位市民選擇是否借閱時政類圖書的概率均為,市民之間選擇意愿相互獨立.

1)從問卷市民中隨機抽取4人,記總得分為隨機變量,求的分布列和數(shù)學期望;

2)(i)若從問卷市民中隨機抽取人,記總分恰為分的概率為,求數(shù)列的前10項和;

(ⅱ)在對所有問卷市民進行隨機問卷調查過程中,記已調查過的累計得分恰為分的概率為(比如:表示累計得分為1分的概率,表示累計得分為2分的概率,),試探求之間的關系,并求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),在同一平面直角坐標系中,將曲線上的點按坐標變換得到曲線,以原點為極點、軸的正半軸為極軸,建立極坐標系.

1)求曲線的極坐標方程和曲線的直角坐標方程;

2)若直線與曲線交于兩點,與曲線交于兩點,求的值.

查看答案和解析>>

同步練習冊答案