【題目】某中學(xué)利用周末組織教職員工進(jìn)行了一次秋季登山健身的活動(dòng),有Ⅳ人參加,現(xiàn)將所有參加者按年齡情況分為,,,,等七組,其頻率分布直方圖如圖所示,已知這組的參加者是6人.

1)已知這兩組各有2名數(shù)學(xué)教師,現(xiàn)從這兩個(gè)組中各選取2人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中恰有1名數(shù)學(xué)老師的概率;

2)組織者從這組的參加者(其中共有4名女教師,其余全為男教師)中隨機(jī)選取3名擔(dān)任后勤保障工作,其中女教師的人數(shù)為,求的分布列和均值.

【答案】1;(2)見(jiàn)解析.

【解析】

1)根據(jù)頻率分布直方圖,先得到年齡在之間的概率,再由這組的參加者是6人,求得參加的總?cè)藬?shù).然后分別求得年齡在之間的人數(shù),然后利用古典概型的概率求解.

2)先得到年齡在的人數(shù),根據(jù)有4名女教師,則的可能取值為:1,2,3,然后求得相應(yīng)的概率,列出分布列再求期望.

1)因?yàn)槟挲g在之間的概率為,

這組的參加者是6人,

所以參加的總?cè)藬?shù)為

所以年齡在之間的人數(shù)為,

年齡在之間的人數(shù)為,

所以?xún)山M選出的人中恰有1名數(shù)學(xué)老師的概率.

2)年齡在的人數(shù)為:,從中隨機(jī)選取3名擔(dān)任后勤保障工作,其中女教師的人數(shù)為,的可能取值為:12,3

分布列為:

X

1

2

3

p

均值 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)F,過(guò)F的直線與拋物線交于A,B兩點(diǎn),則的最小值是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】南北朝時(shí)期的偉大數(shù)學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出祖暅原理:“冪勢(shì)既同,則積不容異”.其含義是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任意平面所截,如果截得兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.如圖,夾在兩個(gè)平行平面之間的兩個(gè)幾何體的體積分別為、,被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面面積分別為,則命題:“、相等”是命題、總相等”的(

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行調(diào)查,通過(guò)抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說(shuō)明理由.

(3)估計(jì)居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),若恒成立,求實(shí)數(shù)b的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給圖中AB,C,D,EF六個(gè)區(qū)域進(jìn)行染色,每個(gè)區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲箱中裝有3個(gè)紅球,2個(gè)黑球,乙箱中裝有2個(gè)紅球,3個(gè)黑球,這些球除顏色外完全相同,某商場(chǎng)舉行有獎(jiǎng)促銷(xiāo)活動(dòng),規(guī)定顧客購(gòu)物1000元以上,可以參與抽獎(jiǎng)一次,設(shè)獎(jiǎng)規(guī)則如下:每次分別從以上兩個(gè)箱子中各隨機(jī)摸出2個(gè)球,共4個(gè)球,若摸出4個(gè)球都是紅球,則獲得一等獎(jiǎng),獎(jiǎng)金300元;摸出的球中有3個(gè)紅球,則獲得二等獎(jiǎng),獎(jiǎng)金200元;摸出的球中有2個(gè)紅球,則獲得三等獎(jiǎng),獎(jiǎng)金100元;其他情況不獲獎(jiǎng),每次摸球結(jié)束后將球放回原箱中.

1)求在1次摸獎(jiǎng)中,獲得二等獎(jiǎng)的概率;

2)若3人各參與摸獎(jiǎng)1次,求獲獎(jiǎng)人數(shù)X的數(shù)學(xué)期望;

3)若商場(chǎng)同時(shí)還舉行打9折促銷(xiāo)活動(dòng),顧客只能在兩項(xiàng)促銷(xiāo)活動(dòng)中任選一項(xiàng)參與.假若你購(gòu)買(mǎi)了價(jià)值1200元的商品,那么你選擇參與哪一項(xiàng)活動(dòng)對(duì)你有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中是實(shí)數(shù)).

(1)求的單調(diào)區(qū)間;

(2)若設(shè),且有兩個(gè)極值點(diǎn)),求取值范圍.(其中為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,已知是等邊三角形,平面,,,點(diǎn)為棱的中點(diǎn).

(1)求證:平面;

(2)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案