【題目】已知函數(shù)(其中是實(shí)數(shù)).

(1)求的單調(diào)區(qū)間;

(2)若設(shè),且有兩個(gè)極值點(diǎn),),求取值范圍.(其中為自然對(duì)數(shù)的底數(shù)).

【答案】(1)當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間,當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2).

【解析】

試題分析:(1)求出的定義域?yàn)?/span>,,由此利用導(dǎo)數(shù)性質(zhì)和分類(lèi)討論思想能求出的單調(diào)區(qū)間;(2)推導(dǎo)出,令,則恒成立,由此能求出的取值范圍.

試題解析:(1)的定義域?yàn)?/span>,,

,對(duì)稱(chēng)軸,,

(1)當(dāng),即時(shí),

于是,函數(shù)的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間.

(2)當(dāng),即時(shí),,則恒成立

于是,的單調(diào)遞增區(qū)間為,無(wú)減區(qū)間.

,得,,

當(dāng)時(shí),,當(dāng)時(shí),

于是,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.綜上所述:

當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間.

當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

(2)由(1)知,若有兩個(gè)極值點(diǎn),則,且,,

,,,又,解得,于是,

),則恒成立,單調(diào)遞減,,即,故的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)有兩個(gè)極值點(diǎn),且恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)利用周末組織教職員工進(jìn)行了一次秋季登山健身的活動(dòng),有Ⅳ人參加,現(xiàn)將所有參加者按年齡情況分為,,,,,等七組,其頻率分布直方圖如圖所示,已知這組的參加者是6人.

1)已知這兩組各有2名數(shù)學(xué)教師,現(xiàn)從這兩個(gè)組中各選取2人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中恰有1名數(shù)學(xué)老師的概率;

2)組織者從這組的參加者(其中共有4名女教師,其余全為男教師)中隨機(jī)選取3名擔(dān)任后勤保障工作,其中女教師的人數(shù)為,求的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)上有一動(dòng)點(diǎn),過(guò)點(diǎn)作直線(xiàn)垂直于軸,動(dòng)點(diǎn)上,且滿(mǎn)足為坐標(biāo)原點(diǎn)),記點(diǎn)的軌跡為曲線(xiàn).

(1)求曲線(xiàn)的方程;

(2)已知定點(diǎn),為曲線(xiàn)上一點(diǎn),直線(xiàn)交曲線(xiàn)于另一點(diǎn),且點(diǎn)在線(xiàn)段上,直線(xiàn)交曲線(xiàn)于另一點(diǎn),求的內(nèi)切圓半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)點(diǎn),定義,其中為坐標(biāo)原點(diǎn),對(duì)于下列結(jié)論:

符合的點(diǎn)的軌跡圍成的圖形面積為8;

設(shè)點(diǎn)是直線(xiàn):上任意一點(diǎn),則;

設(shè)點(diǎn)是直線(xiàn):上任意一點(diǎn),則使得“最小的點(diǎn)有無(wú)數(shù)個(gè)”的充要條件是;

設(shè)點(diǎn)是橢圓上任意一點(diǎn),則

其中正確的結(jié)論序號(hào)為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是自然對(duì)數(shù)的底數(shù)),.

1)若,求的極值;

2)對(duì)任意都有成立,求實(shí)數(shù)的取值范圍.

3)對(duì)任意證明:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《中國(guó)詩(shī)詞大會(huì)》(第三季)亮點(diǎn)頗多,在“人生自有詩(shī)意”的主題下,十場(chǎng)比賽每場(chǎng)都有一首特別設(shè)計(jì)的開(kāi)場(chǎng)詩(shī)詞在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.若《沁園春·長(zhǎng)沙》、《蜀道難》、《敕勒歌》、《游子吟》、《關(guān)山月》、《清平樂(lè)·六盤(pán)山》排在后六場(chǎng),且《蜀道難》排在《游子吟》的前面,《沁園春·長(zhǎng)沙》與《清平樂(lè)·六盤(pán)山》不相鄰且均不排在最后,則后六場(chǎng)的排法有__________種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高一年級(jí)某個(gè)班分成7個(gè)小組,利用假期參加社會(huì)公益服務(wù)活動(dòng)每個(gè)小組必須全員參加,參加活動(dòng)的次數(shù)記錄如下:

組別

參加活動(dòng)次數(shù)

3

2

4

3

3

4

2

求該班的7個(gè)小組參加社會(huì)公益服務(wù)活動(dòng)數(shù)的中位數(shù)及與平均數(shù)v;

從這7個(gè)小組中隨機(jī)選出2個(gè)小組在全校進(jìn)行活動(dòng)匯報(bào),求“選出的2個(gè)小組參加社會(huì)公益服務(wù)活動(dòng)次數(shù)相等”的概率.

小組每組有4名同學(xué),小組有5名同學(xué),記“該班學(xué)參加社會(huì)公益服務(wù)活動(dòng)的平均次數(shù)”為,寫(xiě)出v的大小關(guān)系結(jié)論不要求證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4 坐標(biāo)系與參數(shù)方程選講

在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)極坐標(biāo)方程為.

(1)求直線(xiàn)的普通方程以及曲線(xiàn)的參數(shù)方程;

(2)當(dāng)時(shí),為曲線(xiàn)上動(dòng)點(diǎn),求點(diǎn)到直線(xiàn)距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案