已知 f(x)=|lgx|,若0<a<1<b且f(a)=f(b),則log2(1+ab)的值為(  )
A、0B、1C、-1D、不確定
考點:對數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)對數(shù)函數(shù)的運算性質(zhì)和對數(shù)函數(shù)的圖象和性質(zhì)得到ab=1,代入即可.
解答: 解:∵f(x)=|lgx|,若0<a<1<b且f(a)=f(b),
∴-lga=lgb,
∴l(xiāng)gab=0=lg1,
∴ab=1,
∴l(xiāng)og2(1+ab)=log22=1,
故選:B
點評:本題考查對數(shù)函數(shù)的運算性質(zhì)和對數(shù)函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知a,b表示直線,α,β表示平面,下列推理正確的是(  )
A、α∩β=a,b?α⇒a∥b
B、α∩β=a,a∥b⇒b∥α且b∥β
C、a∥β,b∥β,a?α,b?α⇒α∥β
D、α∥β,α∩γ=a,β∩γ=b⇒a∥b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,已知a1=1,a2=3,且an+2是anan+1的個位數(shù)字,Sn是{an}的前n項和,則S24-a1-a2=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用min{a,b,c}表示a,b,c三個數(shù)中的最小值,設(shè)f(x)=min{2x,x+1,10-x}(x≥0),則f(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a2、a5是方程x2-12x+27=0的兩根,數(shù)列{an}是遞增的等差數(shù)列,數(shù)列{bn}的前n項和為Sn,且Sn=1-
1
2
bn(n∈N+).
(1)求數(shù)列{an},{bn}的通項公式;
(2)記cn=anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在同一平面直角坐標系中,函數(shù)f(x)=lg(x+1)的圖象與函數(shù)g(x)=lg(-x+1)的圖象關(guān)于( 。
A、原點對稱B、x軸對稱
C、直線y=x對稱D、y軸對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={X∈N|X≤5},B={2,3,6},則A∩B=( 。
A、{2,3,6}
B、{1,2,3,4,5}
C、{2,3}
D、{0,1,2,3,4,5,6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為征求個人所得稅法修改建議,某機構(gòu)對當?shù)鼐用竦脑率杖胝{(diào)查10000人,根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在[1000,1500)),因操作人員不慎,未標出第五組頂部對應的縱軸數(shù)據(jù).
(Ⅰ)請你補上第五組頂部對應的縱軸數(shù)據(jù),并求居民月收入在[3000,4000)的頻率;
(Ⅱ)根據(jù)頻率分布直方圖估算樣本數(shù)據(jù)的中位數(shù);
(Ⅲ)為了分析居民收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000人中用分層抽樣方法抽出100人進行分析,則月收入在[2500,3000)的這段應抽多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}為公差不為0的等差數(shù)列,Sn為前n項和,a5和a7的等差中項為11,且a2•a5=a1•a14
(Ⅰ)求an及Sn;
(Ⅱ)令bn=
1
anan+1
,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

同步練習冊答案