【題目】
設(shè)函數(shù)
①若,則的最小值為
②若恰有2個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是 .

【答案】1;
【解析】①時(shí),函數(shù)在(,1)上為增函數(shù),函數(shù)值大于1,在為減函數(shù),在為增函數(shù),當(dāng)x=時(shí),f(x)取得最小值為1:
(2)①若函數(shù)g(x)=在x<1時(shí)與x軸有一個(gè)交點(diǎn),則a>0,并且當(dāng)x=1時(shí),g(1)=2-a>0,則0<a<2,函數(shù)h(x)=4(x-a)(x-2a)與x軸有一個(gè)交點(diǎn),所以2a1且a<1
②若函數(shù)與x軸有無(wú)交點(diǎn),則函數(shù)與x軸有兩個(gè)交點(diǎn),當(dāng)時(shí)g(x)與x軸有無(wú)交點(diǎn),與x軸有無(wú)交點(diǎn),不合題意;當(dāng)時(shí),,與x軸有兩個(gè)交點(diǎn),x=a和x=2a,由于,兩交點(diǎn)橫坐標(biāo)均滿足;綜上所述a的取值范圍.
【考點(diǎn)精析】利用函數(shù)的最值及其幾何意義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿分15分某工廠某種航空產(chǎn)品的年固定成本為萬(wàn)元,每生產(chǎn),需另投入成本為,當(dāng)年產(chǎn)量不足件時(shí),萬(wàn)元).當(dāng)年產(chǎn)量不小于件時(shí),萬(wàn)元).每件商品售價(jià)為萬(wàn)元.通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.

(1)寫(xiě)出年利潤(rùn)萬(wàn)元)關(guān)于年產(chǎn)量)的函數(shù)解析式;

(2)年產(chǎn)量為多少時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·湖北)《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱(chēng)之為鱉臑.
在如圖所示的陽(yáng)馬P-ABCD中,側(cè)棱PD底面ABCD,且PD=CD,點(diǎn)E是BC的中點(diǎn),連接DE,BD,BE
(I)證明:DE底面PBC,試判斷四面體EBCD是否為鱉臑. 若是,寫(xiě)出其四個(gè)面的直角(只需寫(xiě)出結(jié)論);若不是,請(qǐng)說(shuō)明理由;
(Ⅱ)記陽(yáng)馬的體積為,四面體的體積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·陜西)設(shè)f(x)=lnx, 0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),則下列關(guān)系式中正確的是( )
A.q=r<p
B.q=r>p
C.p=r<q
D.p=r>q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·陜西)已知橢圓E: (a>b>0)的半焦距為c,原點(diǎn)0到經(jīng)過(guò)兩點(diǎn)(c,0),(0,b)的直線的距離為c.
(1)求橢圓E的離心率
(2)如圖,AB是圓M:(x+2)2+(y-1)=的一條直徑,若橢圓E經(jīng)過(guò)A,B兩點(diǎn),求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足:,,且(n=1,2,...).記
集合
(1)(Ⅰ)若,寫(xiě)出集合M的所有元素;
(2)(Ⅱ)若集合M存在一個(gè)元素是3的倍數(shù),證明:M的所有元素都是3的倍數(shù);
(3)(Ⅲ)求集合M的元素個(gè)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C1:x2=4y 的焦點(diǎn)F也是橢圓c2:的一個(gè)焦點(diǎn), C1和C2的公共弦長(zhǎng)為
(1)求 C2的方程;
(2)過(guò)點(diǎn)F 的直線 l與 C1相交于A與B兩點(diǎn), 與C2相交于C , D兩點(diǎn),且 同向
(。┤ 求直線l的斜率;
(ⅱ)設(shè) C1在點(diǎn) A處的切線與 x軸的交點(diǎn)為M ,證明:直線l 繞點(diǎn) F旋轉(zhuǎn)時(shí), MFD總是鈍角三角形。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的內(nèi)角 的對(duì)邊分別為 ,已知

(1)求 ∠ ;
(2)若 ,求 的面積 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E:mx2+y2=1(m>0).
(Ⅰ)若橢圓E的右焦點(diǎn)坐標(biāo)為 ,求m的值;
(Ⅱ)由橢圓E上不同三點(diǎn)構(gòu)成的三角形稱(chēng)為橢圓的內(nèi)接三角形.若以B(0,1)為直角頂點(diǎn)的橢圓E的內(nèi)接等腰直角三角形恰有三個(gè),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案