4.為了解甲、乙兩個快遞公司的工作狀況,假設(shè)同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月投遞的快遞件數(shù)記錄結(jié)果中分別隨機抽取8天的數(shù)據(jù)如下:
甲公司某員工A:32    33   33    35   36   39   33    41
乙公司某員工B:42    36   36    34   37   44   42     36
(I)根據(jù)兩組數(shù)據(jù)完成甲、乙兩個快遞公司某員工A和某員工B投遞快遞件數(shù)的莖葉圖,并通過莖葉圖,對員工A和員工B投遞快遞件數(shù)作比較,寫出一個統(tǒng)計結(jié)論:

統(tǒng)計結(jié)論:通過莖葉圖可以看出,乙公司某員工B投遞快遞件數(shù)的平均值高于甲公司某員工A投遞快遞件數(shù)的平均值
(II)請根據(jù)甲公司員工A和乙公司員工B分別隨機抽取的8天投遞快遞件數(shù),試估計甲公司員工比乙公司員工該月投遞快遞件數(shù)多的概率.

分析 (I)根據(jù)條件,可得某員工A和某員工B投遞快遞件數(shù)的莖葉圖,從而得出統(tǒng)計結(jié)論;
(II)確定基本事件的個數(shù),可估計甲公司員工比乙公司員工該月投遞快遞件數(shù)多的概率.

解答 解:(I)某員工A和某員工B投遞快遞件數(shù)的莖葉圖如下:

統(tǒng)計結(jié)論:通過莖葉圖可以看出,乙公司某員工B投遞快遞件數(shù)的平均值高于甲公司某員工A投遞快遞件數(shù)的平均值.(其它正確的結(jié)論照樣給分)…(4分)
(II)設(shè)事件Ai為“甲公司某員工A在抽取的8天中,第i天投遞的快遞件數(shù)”,
事件Bi為“乙公司某員工B在抽取的8天中,第i天投遞的快遞件數(shù)”,i=1,2,…,8.
設(shè)事件C為“甲公司某員工A比乙公司某員工B投遞的快遞件數(shù)多”.由題意知C=A4B4∪A5B4∪A6B2∪A6B3∪A6B4∪A6B5∪A6B8∪A8B2∪A8B3∪A8B4∪A8B5UA8B8因此$P(C)=\frac{12}{64}=\frac{3}{16}$.…(8分)
因此可以估計甲公司員工比乙公司員工該月投遞快遞件數(shù)多的概率為$\frac{3}{16}$.…(9分)

點評 本題考查莖葉圖,考查概率的計算,正確運用所給數(shù)據(jù)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從甲地到乙地有3條路可選擇,從乙地到丙地有2條路可選擇,從丙地到丁地有5條路可選擇,那么從甲地經(jīng)過乙、再過丙、最后到丁地可選擇的旅行方式的不同種數(shù)為( 。
A.10B.16C.30D.31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知角α的終邊經(jīng)過點P(-3,4),則tan2α=( 。
A.$\frac{24}{7}$B.$\frac{8}{3}$C.-$\frac{8}{3}$D.-$\frac{24}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=$\frac{lnx}{x}$在x=1處的導(dǎo)數(shù)等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知{an}是等差數(shù)列,公差d不為零,前n項和是Sn,若a3,a4,a8成等比數(shù)列,則( 。
A.a1d<0,dS3<0B.a1d>0,dS3>0C.a1d>0,dS3<0D.a1d<0,dS3>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若彈簧所受的力x>1與伸縮的距離按胡克定律F=kl(k為彈性系數(shù))計算,且10N的壓力能使彈簧壓縮10cm;為在彈性限度內(nèi)將彈簧從平衡位置拉到離平衡位置8cm處,則克服彈力所做的功為(  )
A.0.28JB.0.12JC.0.26JD.0.32J

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.“莞馬”活動中的α機器人一度成為新聞熱點,為檢測其質(zhì)量,從一生產(chǎn)流水線上抽取20件該產(chǎn)品,其中合格產(chǎn)品有15件,不合格的產(chǎn)品有5件.
(1)現(xiàn)從這20件產(chǎn)品中任意抽取2件,記不合格的產(chǎn)品數(shù)為X,求X的分布列及數(shù)學(xué)期望;
(2)用頻率估計概率,現(xiàn)從流水線中任意抽取三個機器人,記ξ為合格機器人與不合格機器人的件數(shù)差的絕對值,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.化簡:$\frac{sin(60°+θ)+cos120°sinθ}{cosθ}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知在實數(shù)集R上的可導(dǎo)函數(shù)f(x),滿足f(x+2)是奇函數(shù),且$\frac{1}{f′(x)}$>2,則不等式f(x)>$\frac{1}{2}$x-1的解集是( 。
A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,1)

查看答案和解析>>

同步練習(xí)冊答案