已知f(α)=
sin(π-α)cos(2π-α)sin(-α+
3
2
π)
cos(-π-α)cos(-α+
3
2
π)

(1)化簡f(α);
(2)若α是第四象限角,且cos(
2
-α)=
1
3
,求f(α)的值.
考點:運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:(1)由條件利用誘導公式化簡可得所給式子的值,可得結(jié)果.
(2)由條件利用同角三角函數(shù)的基本關(guān)系求得f(α)的值.
解答: 解:(1)f(α)=
sin(π-α)cos(2π-α)sin(-α+
3
2
π)
cos(-π-α)cos(-α+
3
2
π)
=
sinα•cosα•(-cosα)
-cosα•(-sinα)
=-cosα.
(2)若α是第四象限角,且cos(
2
-α)=-sinα=
1
3
,∴sinα=-
1
3
,
∴f(α)=-cosα=-
1-sin2α
=-
2
2
3
點評:本題主要考查同角三角函數(shù)的基本關(guān)系、誘導公式的應用,要特別注意符號的選取,這是解題的易錯點,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖三角形ABC中,AD=DC,AE=2EB,BD與CE相交于點P,若
AP
=x
AB
+y
AC
(x,y∈R)則x+y=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B是拋物線y2=4p上不同的兩點,且直線AB的傾斜角為銳角,F(xiàn)為拋物線的焦點,且
FA
=-4
FB
,則直線AB的斜率為( 。
A、
4
3
B、
4
5
C、
3
4
D、
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(1,1,0),B(1,2,1),C(0,0,2),則原點O到平面ABC的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)和g(x)的定義如表:
x123x123
f(x)231g(x)321
則方程g(f(x))=x的解集是(  )
A、ΦB、{3}
C、{2}D、{1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面α,β是兩個不重合的平面,其法向量分別為n1,n2,給出下列結(jié)論:
①若n1∥n2,則α∥β;    
②若n1∥n2,則α⊥β;
③若n1•n2=0,則α⊥β; 
④若n1•n2=0,則α∥β.
其中正確的是( 。
A、①③B、①②C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于橢圓
x2
9
+
y2
8
=1,有下列命題:
①橢圓的離心率是
1
9

②橢圓的長軸長為6,短軸長為4,焦距為2;
③橢圓上的點P到點(1,0)的距離與到直線x=9的距離比為
1
3
;
④直線mx-y-2m+1=0與橢圓一定有兩個交點;
⑤橢圓上的點與兩個焦點構(gòu)成的三角形的面積的最大值為2.
其中正確的命題有
 
(填所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某中學欲制定一項新的制度,學生會為此進行了問卷調(diào)查,所有參與問卷調(diào)查的人中,持有“支持”、“不支持”和“既不支持也不反對”的人數(shù)如下表所示:
支持既不支持也不反對不支持
高一學生800450200
高二學生100150300
(Ⅰ)在所有參與問卷調(diào)查的人中,用分層抽樣的方法抽取n個人,已知從“支持”的人中抽取了45人,求n的值;
(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取5人,從這5人中任意選取2人,求至少有1人是高一學生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(0,1),點B在曲線C1:y=ex-1上,若線段AB與曲線C2:y=
1
x
相交且交點恰為線段AB的中點,則稱點B為曲線C1與曲線C2的一個“相關(guān)點”,記曲線C1與曲線C2的“相關(guān)點”的個數(shù)為n,則( 。
A、n=0B、n=1
C、n=2D、n>2

查看答案和解析>>

同步練習冊答案