已知A(1,1,0),B(1,2,1),C(0,0,2),則原點(diǎn)O到平面ABC的距離為
 
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算
專題:空間位置關(guān)系與距離
分析:由已知得
CA
=(1,1,-2),
CB
=(1,2,-1),
OA
=(1,1,0),設(shè)平面ABC的法向量
n
=(x,y,z),則
n
CA
=x+y-2z=0
n
CB
=x+2y-z=0
,由此利用向量法能求出原點(diǎn)O到平面ABC的距離.
解答: 解:∵A(1,1,0),B(1,2,1),C(0,0,2),
CA
=(1,1,-2),
CB
=(1,2,-1),
OA
=(1,1,0),
設(shè)平面ABC的法向量
n
=(x,y,z),
n
CA
=x+y-2z=0
n
CB
=x+2y-z=0
,
取x=3,得
n
=(3,-1,1),
∴原點(diǎn)O到平面ABC的距離d=
|
OA
n
|
|
n
|
=
|3-1+0|
9+1+1
=
2
11
11

故答案為:
2
11
11
點(diǎn)評(píng):本題考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x-1
x+1
,x∈[0,+∞)的值域?yàn)椋ā 。?/div>
A、[-1,1)
B、(-1,1]
C、[-1,+∞)
D、[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四棱錐P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,E為PC的中點(diǎn),證明:EB∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,AC=1,BC=x,D為斜邊AB的中點(diǎn).將△BCD沿直線CD翻折.若在翻折過(guò)程中存在某個(gè)位置,使得CB⊥AD,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn),且在點(diǎn)(-1,f(-1)).處的切線的斜率是-5,函數(shù)f(x)=
-x3+x2+bx+c,x<1
alnx,x≥1

(Ⅰ)求實(shí)數(shù)b,c的值;
(Ⅱ)求f(x)在區(qū)間[-1,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若cos(α-
π
6
)=
4
5
,則sin(2α+
π
6
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(α)=
sin(π-α)cos(2π-α)sin(-α+
3
2
π)
cos(-π-α)cos(-α+
3
2
π)

(1)化簡(jiǎn)f(α);
(2)若α是第四象限角,且cos(
2
-α)=
1
3
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知t為常數(shù),函數(shù)y=|x2-4x-t|在區(qū)間[0,6]上的最大值為10,則t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}中,若an+1=an+an+2(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”,已知數(shù)列{bn}為“凸數(shù)列”,且b1=1,b2=-2,則數(shù)列{bn}的前2014項(xiàng)和為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案