設(shè)y=cos(π-2x)-2cosx,當(dāng)x為何值時(shí),y有最小值,并求此最小值.

答案:
解析:

  y=-cos2x-2cosx

  y=-cos2x-2cosx

 �。剑�2(cosx+)2  ∵-1≤cosx≤1

  ∴當(dāng)cosx=1即x=2kπ時(shí),y有最小值,且ymin=-2×12-2×1+1=-3

  ∴x=2kπ,k∈Z時(shí),ymin=-3


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044

設(shè)a,b∈R,A={(x,y)|x=n,y=na+b,n∈Z},B={(x,y)|x=m,y=3m2+15,m∈Z},C={(x,y)|x2+y2≤144}是平面xOy內(nèi)點(diǎn)的集合,討論是否存在a,b,使得:

(1)A∩B≠

(2)(a,b)∈C同時(shí)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:成功之路·突破重點(diǎn)線(xiàn)·數(shù)學(xué)(學(xué)生用書(shū)) 題型:044

如圖所示,橢圓=1(a>b>0)的離心率e=,A,B是橢圓上關(guān)于x,y軸均不對(duì)稱(chēng)的兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)與x軸交于P(1,0).

(1)設(shè)AB的中點(diǎn)為C(x0,y0),求x0的值;

(2)若F是橢圓的右焦點(diǎn),且|AF|+|BF|=3,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044

設(shè)f(x)=ax2+bx+c(a>b>c),f(1)=0,g(x)=ax+b,

(1)求證:函數(shù)y=f(x)與y=g(x)的圖象有兩個(gè)交點(diǎn).

(2)設(shè)f(x)與g(x)的圖象的交點(diǎn)A,B在x軸上的射影為A1,B1,求|A1B1|的取值范圍.

(3)求證:當(dāng)x≤-時(shí),恒有f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004全國(guó)各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044

設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x>0時(shí),f(x)>1,且對(duì)任意x,y∈R,都有f(x+y)=f(x)·f(y).

(Ⅰ)求證:f(0)=1;

(Ⅱ)求證:f(x)在R上是增函數(shù);

(Ⅲ)設(shè)集合A={(x,y)|f(x2)·f(y2)<f(1)},B={(x,y)|f(x+y+c)=1,c∈R},若A∩B=,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004全國(guó)各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044

已知二次函數(shù)f(x)=ax2+bx+c的圖像的頂點(diǎn)坐標(biāo)是(,-),且f(3)=2

(Ⅰ)求y=f(x)的表達(dá)式,并求出f(1),f(2)的值;

(Ⅱ)數(shù)列{an},{bn},若對(duì)任意的實(shí)數(shù)x都滿(mǎn)足g(x)·f(x)+anx+bn=xn+1,n∈N*,其中g(shù)(x)是定義在實(shí)數(shù)R上的一個(gè)函數(shù),求數(shù)列{an}、{bn}的通項(xiàng)公式;

(Ⅲ)設(shè)圓Cn:(x-an)2+(y-bn)2,若圓Cn與圓Cn+1外切,{rn}是各項(xiàng)都是正數(shù)的等比數(shù)列,記Sn是前n個(gè)圓的面積之和,求.(n∈N*)

查看答案和解析>>

同步練習(xí)冊(cè)答案