【題目】已知圓C,直線1過原點(diǎn)O

1)若直線l與圓C相切,求直線l的斜率;

2)若直線l與圓C交于A、B兩點(diǎn),點(diǎn)P的坐標(biāo)為,若.求直線l的方程.

【答案】1 2

【解析】

1)設(shè)出直線方程為,由圓心到直線的距離等于賀半徑可求得,這類問題中還要注意切線是否與軸垂直.

2就是,因此設(shè)點(diǎn)A、B的坐標(biāo)分別為 ,,由(1)知直線l的方程為.把方程代入圓方程消元后由韋達(dá)定理得,代入可求得,從而得直線方程.

解:(1)設(shè)直線l的方程為 .由直線l與圓C相切.有 ,整理為.解得:,

2)設(shè)點(diǎn)A、B的坐標(biāo)分別為 ,由(1)知直線l的方程為

聯(lián)立方程 ,消去y整理為 ,有,,

,,

,

,有,得 ,解得 ,

則直線l的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)口袋內(nèi)有個(gè)不同的紅球,個(gè)不同的白球,

(1)從中任取個(gè)球,紅球的個(gè)數(shù)不比白球少的取法有多少種?

(2)若取一個(gè)紅球記分,取一個(gè)白球記分,從中任取個(gè)球,使總分不少于分的取法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知函數(shù)是奇函數(shù),的定義域?yàn)?/span>.當(dāng)時(shí), .(e為自然對(duì)數(shù)的底數(shù)).

(1)若函數(shù)在區(qū)間上存在極值點(diǎn),求實(shí)數(shù)的取值范圍;

(2)如果當(dāng)x≥1時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, , , 的中點(diǎn), 的中點(diǎn),且為正三角形.

(1)求證: 平面

(2)若,三棱錐的體積為1,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點(diǎn)到焦點(diǎn)的距離,傾斜角為的直線經(jīng)過焦點(diǎn),且與拋物線交于兩點(diǎn)、.

1)求拋物線的標(biāo)準(zhǔn)方程及準(zhǔn)線方程;

2)若為銳角,作線段的中垂線軸于點(diǎn).證明:為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,拋物線C上一動(dòng)點(diǎn)P到直線軸距離之和的最小值是(

A.1B.2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù),直線l

討論的圖象與直線l的交點(diǎn)個(gè)數(shù);

若函數(shù)的圖象與直線l相交于,兩點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.直線的極坐標(biāo)方程為

(1)求曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

(2)已知直線與曲線交于兩點(diǎn),與軸交于點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)和非零實(shí)數(shù),若兩條不同的直線、均過點(diǎn),且斜率之積為,則稱直線、是一組共軛線對(duì),如直線是一組共軛線對(duì),其中是坐標(biāo)原點(diǎn).

1)已知、是一組共軛線對(duì),且知直線,求直線的方程;

2)如圖,已知點(diǎn)、點(diǎn)和點(diǎn)分別是三條傾斜角為銳角的直線、、上的點(diǎn)(、、、均不重合),且直線共軛線對(duì),直線、共軛線對(duì),直線共軛線對(duì),求點(diǎn)的坐標(biāo);

3)已知點(diǎn),直線、共軛線對(duì),當(dāng)的斜率變化時(shí),求原點(diǎn)到直線、的距離之積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案