【題目】已知拋物線上一點到焦點的距離,傾斜角為的直線經(jīng)過焦點,且與拋物線交于兩點、.
(1)求拋物線的標準方程及準線方程;
(2)若為銳角,作線段的中垂線交軸于點.證明:為定值,并求出該定值.
【答案】(1)拋物線的方程為,準線方程為;
(2)為定值,證明見解析.
【解析】
(1)利用拋物線的定義結(jié)合條件,可得出,于是可得出點的坐標,然后將點的坐標代入拋物線的方程求出的值,于此可得出拋物線的方程及其準線方程;
(2)設直線的方程為,設點、,將直線的方程與拋物線的方程聯(lián)立,消去,列出韋達定理,計算出線段的中點的坐標,由此得出直線的方程,并得出點的坐標,計算出和的表達式,可得出,然后利用二倍角公式可計算出為定值,進而證明題中結(jié)論成立.
(1)由拋物線的定義知,,.
將點代入,得,得.
拋物線的方程為,準線方程為;
(2)設點、,設直線的方程為,
由,消去得:,則,
,.
設直線中垂線的方程為:,
令,得:,則點,,.
,
故為定值.
科目:高中數(shù)學 來源: 題型:
【題目】已知點是雙曲線的左右焦點,其漸近線為,且其右焦點與拋物線的焦點重合.
(1)求雙曲線的方程;
(2)過的直線與相交于兩點,直線的法向量為,且,求的值
(3)在(2)的條件下,若雙曲線在第四象限的部分存在一點滿足,求的值及的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為迎接2022年北京冬奧會,推廣滑雪運動,某滑雪場開展滑雪促銷活動.該滑雪場的收費標準是:滑雪時間不超過1小時免費,超過1小時的部分每小時收費標準為40元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立地來該滑雪場運動,設甲、乙不超過1小時離開的概率分別為,;1小時以上且不超過2小時離開的概率分別為,;兩人滑雪時間都不會超過3小時.
(1)求甲、乙兩人所付滑雪費用相同的概率;
(2)設甲、乙兩人所付的滑雪費用之和為隨機變量ξ,求ξ的分布列與數(shù)學期望E(ξ).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的值域為,記函數(shù).
(1)求實數(shù)的值;
(2)存在使得不等式成立,求實數(shù)的取值范圍;
(3)若關(guān)于的方程有5個不等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點,在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有多年的歷史,對唐三彩的復制和仿制工藝,至今也有百余年的歷史.某陶瓷廠在生產(chǎn)過程中,對仿制的件工藝品測得重量(單位:)數(shù)據(jù)如下表:
分組 | 頻數(shù) | 頻率 |
合計 |
(1)求出頻率分布表中實數(shù),的值;
(2)若從仿制的件工藝品重量范圍在的工藝品中隨機抽選件,求被抽選件工藝品重量均在范圍中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:,直線1過原點O.
(1)若直線l與圓C相切,求直線l的斜率;
(2)若直線l與圓C交于A、B兩點,點P的坐標為,若.求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列關(guān)于復數(shù)的四個命題中,正確的個數(shù)是( )
(1)若,則復數(shù)對應的動點的軌跡是橢圓;
(2)若,則復數(shù)對應的動點的軌跡是雙曲線;
(3)若,則復數(shù)對應的動點的軌跡是拋物線;
(4)若,則的取值范圍是
A.4B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間.
(2)若函數(shù)有兩個極值點、,且,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com