15.在△ABC中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,且(a+c)2=b2+3ac.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,且sinB+sin(C-A)=2sin2A,求△ABC的面積.

分析 (Ⅰ)整理已知等式可得a2+c2-b2=ac,由余弦定理可得cosB=$\frac{1}{2}$,結(jié)合范圍B∈(0,π),可求B的值.
(Ⅱ)由三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)已知可得:cosA(sinC-2sinA)=0,可得cosA=0,或sinC=2sinA,
分類討論,利用三角形面積公式即可計(jì)算得解.

解答 (本題滿分為12分)
解:(Ⅰ)∵(a+c)2=b2+3ac,
∴可得:a2+c2-b2=ac,
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$.…6分
(Ⅱ)∵sinB+sin(C-A)=2sin2A,
∴sin(C+A)+sin(C-A)=2sin2A,
∴sinCcosA+cosCsinA+sinCcosA-cosCsinA=4sinAcosA,可得:cosA(sinC-2sinA)=0,
∴cosA=0,或sinC=2sinA,
∴當(dāng)cosA=0時(shí),A=$\frac{π}{2}$,可得c=$\frac{tanB}$=$\frac{2}{\sqrt{3}}$,可得S△ABC=$\frac{1}{2}$•b•c=$\frac{1}{2}×2×\frac{2}{\sqrt{3}}$=$\frac{2\sqrt{3}}{3}$;
當(dāng)sinC=2sinA時(shí),由正弦定理知c=2a,由余弦定理可得:4=a2+c2-ac=a2+4a2-2a2=3a2,
解得:a=$\frac{2\sqrt{3}}{3}$,c=$\frac{4\sqrt{3}}{3}$,S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×$$\frac{2\sqrt{3}}{3}$×$\frac{4\sqrt{3}}{3}$×$\frac{\sqrt{3}}{2}$=$\frac{2\sqrt{3}}{3}$.…12分

點(diǎn)評(píng) 本題主要考查了余弦定理,三角函數(shù)恒等變換的應(yīng)用,三角形面積公式在解三角形中的應(yīng)用,考查了分類討論思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)z=1-i(i為虛數(shù)單位),若復(fù)數(shù)$\frac{2}{z}$-z2在復(fù)平面內(nèi)對(duì)應(yīng)的向量為$\overrightarrow{OZ}$,則向量$\overrightarrow{OZ}$的模是( 。
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=4+5cost\\ y=5+5sint\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,$∠ACB=\frac{π}{6},BC=\sqrt{3},AC=4$,則AB等于( 。
A.$\sqrt{7}$B.3C.$\sqrt{11}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在直角坐標(biāo)系中xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=acost\\ y=2sint\end{array}\right.(t$為參數(shù),a>0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為$ρcos({θ+\frac{π}{4}})=-2\sqrt{2}$.
(1)設(shè)P是曲線C上的一個(gè)動(dòng)點(diǎn),當(dāng)a=2$\sqrt{3}$時(shí),求點(diǎn)P到直線l的距離的最大值;
(2)若曲線C上所有的點(diǎn)均在直線l的右下方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.將圓x2+y2-2x=0向左平移一個(gè)單位長(zhǎng)度,再把所得曲線上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉?lái)的$\sqrt{3}$倍得到曲線C.
(1)寫出曲線C的參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\frac{3\sqrt{2}}{2}$,若A,B分別為曲線C及直線l上的動(dòng)點(diǎn),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知△ABC的外接圓半徑為1,角A,B,C的對(duì)應(yīng)邊分別為a,b,c,若sinB=acosC.,
(1)求$\frac{a}{c}$的值;
(2)若M為邊BC的中點(diǎn),$\overrightarrow{AM}•\overrightarrow{AC}=9{sin^2}A$,求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.一個(gè)幾何體的三視圖如圖所示,該幾何體的表面積是$10+2\sqrt{5}$,則圖中x的值為(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積等于(  )
A.72B.48C.24D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案