根據(jù)如圖所示的程序框圖,將輸出的x,y值依次分別記為x1,x2,…,xk,…;y1,y2,…,yk,….
(1)分別求數(shù)列{xk}和{yk}的通項(xiàng)公式;
(2)令zk=xkyk,求數(shù)列{zk}的前k項(xiàng)和Tk,其中k∈N*,k≤2 007.
(1)yk=3k-1(k∈N*,k≤2 007).(2)(k-1)·3k+1+3+k2
【解析】(1)由框圖,知數(shù)列{xk}中,x1=1,xk+1=xk+2,
∴xk=1+2(k-1)=2k-1(k∈N*,k≤2 007)
由框圖,知數(shù)列{yk}中,yk+1=3yk+2,
∴yk+1+1=3(yk+1)∴=3,y1+1=3.
∴數(shù)列{yk+1}是以3為首項(xiàng),3為公比的等比數(shù)列,
∴yk+1=3·3k-1=3k,∴yk=3k-1(k∈N*,k≤2 007).
(2)Tk=x1y1+x2y2+…+xkyk=1×(3-1)+3×(32-1)+…+(2k-1)(3k-1)=1×3+3×32+…+(2k-1)·3k-[1+3+…+(2k-1)]
記Sk=1×3+3×32+…+(2k-1)·3k ①
則3Sk=1×32+3×33+…+(2k-1)·3k+1 ②
①-②,得-2Sk=3+2·32+2·33+…+2·3k-(2k-1)·3k+1
=2(3+32+…+3k)-3-(2k-1)·3k+1=2×-3-(2k-1)·3k+1
=3k+1-6-(2k-1)·3k+1=2(1-k)·3k+1-6
∴Sk=(k-1)·3k+1+3∴Tk=(k-1)·3k+1+3+k2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題5第3課時(shí)練習(xí)卷(解析版) 題型:解答題
已知橢圓E:=1(a>b>0)的右焦點(diǎn)為F,過原點(diǎn)和x軸不重合的直線與橢圓E相交于A,B兩點(diǎn),且|AF|+|BF|=2,|AB|的最小值為2.
(1)求橢圓E的方程;
(2)若圓x2+y2=的切線L與橢圓E相交于P,Q兩點(diǎn),當(dāng)P,Q兩點(diǎn)橫坐標(biāo)不相等時(shí),OP(O為坐標(biāo)原點(diǎn))與OQ是否垂直?若垂直,請(qǐng)給出證明;若不垂直,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題4第2課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知命題“如果x⊥y,y∥z,則x⊥z”是假命題,那么字母x,y,z在空間所表示的幾何圖形可能是( )
A.全是直線 B.全是平面
C.x,z是直線,y是平面 D.x,y是平面,z是直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題3第2課時(shí)練習(xí)卷(解析版) 題型:解答題
已知等比數(shù)列{an}的所有項(xiàng)均為正數(shù),首項(xiàng)a1=1,且a4,3a3,a5成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{an+1-λan}的前n項(xiàng)和為Sn,若Sn=2n-1(n∈N*),求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題3第2課時(shí)練習(xí)卷(解析版) 題型:選擇題
把70個(gè)面包分五份給5個(gè)人,使每人所得成等差數(shù)列,且使較大的三份之和的是較小的兩份之和,則最小的一份為( )
A.2 B.8
C.14 D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題3第1課時(shí)練習(xí)卷(解析版) 題型:填空題
如圖是一個(gè)算法流程圖,則輸出的k的值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第4課時(shí)練習(xí)卷(解析版) 題型:解答題
已知向量a=(cos α,sin α),b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),其中0<α<x<π.
(1)若α=,求函數(shù)f(x)=b·c的最小值及相應(yīng)x的值;
(2)若a與b的夾角為,且a⊥c,求tan 2α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第3課時(shí)練習(xí)卷(解析版) 題型:選擇題
在四邊形ABCD中,=(1,2),=(-4,2),則該四邊形的面積為( )
A. B.2 C.5 D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第5課時(shí)練習(xí)卷(解析版) 題型:選擇題
函數(shù)f(x)的定義域?yàn)?/span>(0,+∞),且f(x)>0,f′(x)>0,則函數(shù)y=xf(x)( )
A.存在極大值 B.存在極小值
C.是增函數(shù) D.是減函數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com