【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”.三國時期,吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形,若直角三角形中較小的銳角,現(xiàn)在向該正方形區(qū)域內(nèi)隨機(jī)地投擲100枚飛鏢,則估計飛鏢落在區(qū)域1的枚數(shù)最有可能是( )
A.30B.40C.50D.60
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)某縣一個化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4噸、硝酸鹽18噸;生產(chǎn)1車皮乙種肥料需要的主要原料是磷酸鹽1噸、硝酸鹽15噸.先庫存磷酸鹽10噸、硝酸鹽66噸,在此基礎(chǔ)上生產(chǎn)這兩種混合肥料.若生產(chǎn)1車皮甲種肥料產(chǎn)生的利潤為10000元;生產(chǎn)1車皮乙種肥料產(chǎn)生的利潤為5000元.那么分別生產(chǎn)甲、乙兩種肥料各多少車皮能產(chǎn)生最大的利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,為橢圓上的兩點(diǎn),滿足,其中,分別為左右焦點(diǎn).
(1)求的最小值;
(2)若,設(shè)直線的斜率為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入,的值分別為5,2,則輸出的值為( )
A.64B.68C.72D.133
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龍)、巳(蛇)、午(馬)、未(羊)、申(猴)、酉(雞)、戌(狗)、亥(豬),每一個人的出生年份對應(yīng)了十二種動物中的一種,即自己的屬相.現(xiàn)有印著六種不同生肖圖案(包含馬、羊)的毛絨娃娃各一個,小張同學(xué)的屬相為馬,小李同學(xué)的屬相為羊,現(xiàn)在這兩位同學(xué)從這六個毛絨娃娃中各隨機(jī)取一個(不放回),則這兩位同學(xué)都拿到自己屬相的毛絨娃娃的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若射線與曲線相交于點(diǎn),將逆時針旋轉(zhuǎn)后,與曲線相交于點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,,沿對角線將折起,使點(diǎn)到達(dá)平面外的點(diǎn)的位置,
(1)求證:平面平面;
(2)當(dāng)平面平面時,求三棱錐的外接球的體積;
(3)當(dāng)為等腰三角形時,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在直角梯形中,,,,點(diǎn)是邊的中點(diǎn),將沿折起,使平面平面,連接,,,得到如圖②所示的幾何體.
(1)求證:平面;
(2)若,二面角的平面角的正切值為,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com