解關(guān)于x的不等式:
a-5x>ax+7(a>0,a≠1)
考點(diǎn):指、對(duì)數(shù)不等式的解法
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:利用指數(shù)函數(shù)的單調(diào)性分0<a<1和a>1轉(zhuǎn)化為一元一次不等式求解.
解答: 解:當(dāng)0<a<1時(shí),原不等式可化為-5x<x+7,解得:x>-
7
6

當(dāng)a>1時(shí),原不等式可化為-5x>x+7,解得:x<-
7
6

∴當(dāng)0<a<1時(shí),原不等式的解集為{x|x>-
7
6
}.
當(dāng)a>1時(shí),原不等式的解集為{x|x<-
7
6
}.
點(diǎn)評(píng):本題考查了指數(shù)函數(shù)的單調(diào)性,考查了指數(shù)不等式的解法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-|x|+2a-1(a為實(shí)常數(shù))
(1)判斷f(x)的奇偶性,并給出證明;
(2)若a>0,設(shè)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,3,4},B={1,2},則滿足A∩C=B∪C的集合C有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(x+1)-f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式f(x)>6x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示給出的是計(jì)算
1
2
+
1
4
+
1
6
+…+
1
20
的值的一個(gè)程序框圖,其中判斷框內(nèi)可以填的條件是
 
.(只須填相應(yīng)序號(hào)) ①i>9?②i>10?③i>19?④i>20?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)在定義域R上的導(dǎo)函數(shù)是f′(x),若f(x)=f(2-x),且當(dāng)x∈(-∞,1)時(shí),(x-1)f′(x)<0,設(shè)a=f(0、b=f(
2
)、c=f(log28),則(  )
A、a<b<c
B、a>b>c
C、c<a<b
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為空間直角坐標(biāo)系的原點(diǎn),以下能使向量
OA
OB
,
OC
共面的三點(diǎn)A,B,C的坐標(biāo)是( 。
A、A(1,0,0),B(0,1,0),C(0,0,1)
B、A(1,2,3),B(3,0,2),C(4,2,5)
C、A(1,1,0),B(1,0,1),C(0,1,1)
D、A(1,1,1),B(1,1,0),C(1,0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=2ax-5(a>0且a≠1)在[-1,2]上的最大值為3
(1)求a的值;
(2)當(dāng)a>1時(shí),求f(x)在(-∞,0)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax-lnx在(1,+∞)內(nèi)單調(diào)遞增,則a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案