18.已知函數(shù)y=loga(2-ax),(a>0,a≠1)在[0,1]上是減函數(shù),則實(shí)數(shù)a的取值范圍是(1,2).

分析 先將函數(shù)f(x)=loga(2-ax)轉(zhuǎn)化為y=logat,t=2-ax,兩個基本函數(shù),再利用復(fù)合函數(shù)的單調(diào)性求解.

解答 解:令y=logat,t=2-ax,
(1)若0<a<1,則函y=logat,是減函數(shù),
由題設(shè)知t=2-ax為增函數(shù),需a<0,故此時無解;
(2)若a>1,則函數(shù)y=logat是增函數(shù),則t為減函數(shù),
需a>0且2-a×1>0,可解得1<a<2
綜上可得實(shí)數(shù)a 的取值范圍是(1,2).
故答案為:(1,2).

點(diǎn)評 本題考查復(fù)合函數(shù)的單調(diào)性,關(guān)鍵是分解為兩個基本函數(shù),利用同增異減的結(jié)論研究其單調(diào)性,再求參數(shù)的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若底面半徑為1的圓錐的側(cè)面展開圖是一個半圓,則此圓錐的表面積是4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x+lg$\sqrt{{x}^{2}+1}$+x)的定義域是R.
(1)判斷f(x)在R上的單調(diào)性,并證明;
(2)若不等式f(m•3x)+f(3x-9x-4)<0對任意x∈R恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=|x-a|-ax,其中a>0.
(1)解不等式f(x)<0;
(2)當(dāng)0<a≤1時,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)g(x)=ax2-(a+1)x+1,f(x)是定義在R上的不恒為零的函數(shù),且對于任意的x,y∈R都滿足:f(xy)=xf(y)+yf(x).
(1)求不等式g(x)<0的解集;
(2)當(dāng)a=1時,若 f(2)=g(2)+1,設(shè)an=f(2n)(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的基礎(chǔ)上,若bn=$\frac{n+2}{n+1}$•$\frac{1}{{a}_{n}}$,數(shù)列{bn}的前n項(xiàng)和為Sn.求證:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a=($\frac{2}{5}$)${\;}^{\frac{3}{5}}$,b=($\frac{2}{5}$)${\;}^{\frac{2}{5}}$,c=($\frac{3}{5}$)${\;}^{\frac{3}{5}}$,則a,b,c大小關(guān)系是( 。
A.a>b>cB.c>a>bC.b>c>aD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a(x<1)}\\{lo{g}_{a}x(x≥1)}\end{array}\right.$是(-∞,+∞)上的減函數(shù),那么a的取值范圍是(  )
A.(0,1)B.(0,$\frac{1}{3}$)C.[$\frac{1}{7}$,$\frac{1}{3}$)D.[$\frac{1}{7}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin\frac{πx}{4},2≤x≤10}\end{array}\right.$,若存在實(shí)數(shù)x1,x2,x3,x4,滿足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則$\frac{({x}_{3}-2)({x}_{4}-2)}{{x}_{1}{x}_{2}}$的取值范圍是(0,12).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=x3-2,則曲線y=f(x)在x=$\frac{1}{2}$處的切線斜率為$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案