【題目】以“你我中國夢,全民建小康”為主題、“社會主義核心價值觀”為主線,為了了解兩個地區(qū)的觀眾對2018年韓國平昌冬奧會準(zhǔn)備工作的滿意程度,對地區(qū)的100名觀眾進行統(tǒng)計,統(tǒng)計結(jié)果如下:
在被調(diào)查的全體觀眾中隨機抽取1名“非常滿意”的人是地區(qū)的概率為0.45,且.
(Ⅰ)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進行問卷調(diào)查,則應(yīng)抽取“滿意”的地區(qū)的人數(shù)各是多少?
(Ⅱ)在(Ⅰ)抽取的“滿意”的觀眾中,隨機選出3人進行座談,求至少有兩名是地區(qū)觀眾的概率?
(Ⅲ)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系?
附: , .
【答案】(Ⅰ) 地區(qū)的“滿意”觀眾,抽取地區(qū)的“滿意”觀眾;(Ⅱ) ;(Ⅲ)答案見解析.
【解析】試題分析:
(Ⅰ)由概率的意義可求得,再根據(jù)已知條件可求得,這樣由分層抽樣的定義可按比例求得兩區(qū)抽取的人數(shù);
(Ⅱ)把抽取的人編號,然后用列舉法列出隨機選3人的各種可能,計數(shù)出至少有兩名是地區(qū)觀眾的組數(shù),由概率公式計算出概率;
(Ⅲ)根據(jù)公式計算出,可得結(jié)論.
試題解析:
(Ⅰ)由題意,得,所以,所以,
因為,所以, ,
則應(yīng)抽取地區(qū)的“滿意”觀眾,抽取地區(qū)的“滿意”觀眾.
(Ⅱ)所抽取的地區(qū)的“滿意”觀眾記為,所抽取的地區(qū)的“滿意”觀眾記為1,2,
則隨機選出三人的不同選法有, , ,共10個結(jié)果,
至少有兩名是地區(qū)的結(jié)果有7個,其概率為.
(Ⅲ)
由表格得 ,
所以沒有理由認(rèn)為觀眾的滿意程度是否與所在地區(qū)有關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織了一次高二文科學(xué)生數(shù)學(xué)學(xué)業(yè)水平模擬測試,學(xué)校從測試合格的男、女生中各隨機抽取100人的成績進行統(tǒng)計分析,分別制成了如圖所示的男生和女生數(shù)學(xué)成績的頻率分布直方圖.
(Ⅰ)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?
(Ⅱ)在(Ⅰ)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有一名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2018·郴州期末]已知三棱錐中,垂直平分,垂足為,是面積為的等邊三角形,,,平面,垂足為,為線段的中點.
(1)證明:平面;
(2)求與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:=2px經(jīng)過點(1,2).過點Q(0,1)的直線l與拋物線C有兩個不同的交點A,B,且直線PA交y軸于M,直線PB交y軸于N.
(Ⅰ)求直線l的斜率的取值范圍;
(Ⅱ)設(shè)O為原點,,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(, 為參數(shù)).以坐標(biāo)原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)當(dāng)時,求曲線上的點到直線的距離的最大值;
(2)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線C:的焦點為F,拋物線上的點A到軸的距離等于.
(1)求拋物線C的方程;
(2)已知經(jīng)過拋物線C的焦點F的直線與拋物線交于A,B兩點,證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點P到定點的距離比它到直線的距離小2,設(shè)動點P的軌跡為曲線C.
求曲線C的方程;
若直線與曲線C和圓從左至右的交點依次為A,B,C,D求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的個數(shù)是( )
①命題“任意”的否定是“任意;
②命題“若,則”的逆否命題是真命題;
③若命題為真,命題為真,則命題且為真;
④命題“若,則”的否命題是“若,則”.
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】探究函數(shù),上的最小值,并確定取得最小值時的值,列表如下:
… | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
… | 14 | 7 | 5.34 | 5.11 | 5.01 | 5 | 5.01 | 5.04 | 5.08 | 5.67 | 7 | 8.6 | 12.14 | … |
(1)觀察表中值隨值變化趨勢特點,請你直接寫出函數(shù),的單調(diào)區(qū)間,并指出當(dāng)取何值時函數(shù)的最小值為多少;
(2)用單調(diào)性定義證明函數(shù)在上的單調(diào)性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com