20.周末甲乙兩同學(xué)相約看電影,約定7點(diǎn)到8點(diǎn)在電影院門口會面,先到者等20分鐘,若另一人還未到就先進(jìn)場,設(shè)兩人在這段時間內(nèi)的各時刻到達(dá)是等可能的,且兩人互不影響,則兩人能在電影院門口會面的概率為( 。
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{2}{3}$D.$\frac{5}{9}$

分析 由題意知本題是一個幾何概型,試驗(yàn)包含的所有事件是Ω={(x,y)|7<x<8,7<y<8},做出事件對應(yīng)的集合表示的面積,寫出滿足條件的事件是A={(x,y)|7<x<8,7<y<8,|x-y|<$\frac{20}{60}$},算出事件對應(yīng)的集合表示的面積,根據(jù)幾何概型概率公式得到結(jié)果.

解答 解:由題意知本題是一個幾何概型,
試驗(yàn)包含的所有事件是Ω={(x,y)|7<x<8,7<y<8}
事件對應(yīng)的集合表示的面積是s=1,
滿足條件的事件是A={(x,y)|7<x<8,7<y<8,|x-y|<$\frac{20}{60}$}
事件對應(yīng)的集合表示的面積是1-$2×\frac{1}{2}×\frac{2}{3}×\frac{2}{3}$=$\frac{5}{9}$,
根據(jù)幾何概型概率公式得到P=$\frac{5}{9}$,
故選D.

點(diǎn)評 本題是一個幾何概型,對于這樣的問題,一般要通過把試驗(yàn)發(fā)生包含的事件同集合結(jié)合起來,根據(jù)集合對應(yīng)的圖形做出面積,用面積的比值得到結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河南省商丘市高一理下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,

(Ⅰ)若,,求b

(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求函數(shù)y=2a$\sqrt{x}$-$\frac{1}{x}$在x∈(0,1]上的最大值(其中a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.四棱錐P-ABCD中,四邊形ABCD為平行四邊形,AC與BD交于點(diǎn)O,點(diǎn)G為BD上一點(diǎn),BG=2GD,$\overrightarrow{PA}$=$\overrightarrow{a}$,$\overrightarrow{PB}$=$\overrightarrow$,$\overrightarrow{PC}$=$\overrightarrow{c}$,用基底{$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$}表示向量$\overrightarrow{BG}$=$\frac{2}{3}$$\overrightarrow{a}$-$\frac{4}{3}$$\overrightarrow$+$\frac{2}{3}$$\overrightarrow{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知tan(α+$\frac{π}{4}$)=2
(Ⅰ)求tanα的值;
(Ⅱ)求$\frac{sin2α-si{n}^{2}α}{1+cos2α}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},則(∁UP)∩Q=( 。
A.{1}B.{2,4}C.{2,4,6}D.{1,2,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在邊長為2的菱形ABCD中,∠BAD=60°,O為AC的中點(diǎn),點(diǎn)P為平面ABCD外一點(diǎn),且平面PAC⊥平面ABCD,PO=1,PA=2.
(1)求證:PO⊥平面ABCD;
(2)求直線PA與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f($\frac{x}{2}$)=-$\frac{1}{8}$x3+$\frac{m}{4}$x2-m(0<m<20).
(1)討論函數(shù)f(x)在區(qū)間[2,6]上的單調(diào)性;
(2)若曲線y=f(x)僅在兩個不同的點(diǎn)A(x1,f(x1)),B(x2,f(x2))處的切線都經(jīng)過點(diǎn)(2,lg$\frac{1}{a}$),其中a≥1,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.p:?x0∈R,x${\;}_{0}^{2}$+m≤0,q:?x∈R,x2+mx+1>0,如果p,q都是命題且(¬p)∨q為假命題,則實(shí)數(shù)m的取值范圍是( 。
A.m≤-2B.-2≤m≤0C.0≤m≤2D.m≥2

查看答案和解析>>

同步練習(xí)冊答案