【題目】一個(gè)多面體的直觀圖及三視圖如圖所示:(其中M,N分別是AF,BC的中點(diǎn)).
(1)求證:MN∥平面CDEF;
(2)求多面體A﹣CDEF的體積.
【答案】
(1)解:由三視圖可知,該多面體是底面為直角三角形的直三棱柱ADE﹣BCF,
且AB=BC=BF=2,DE=CF=2 ,∴∠CBF= .
證明:取BF的中點(diǎn)G,連接MG、NG,
由M,N分別為AF,BC的中點(diǎn)可得,NG∥CF,MG∥EF,
∴平面MNG∥平面CDEF,又MN平面MNG,
∴MN∥平面CDEF
(2)解:取DE的中點(diǎn)H.
∵AD=AE,∴AH⊥DE,
在直三棱柱ADE﹣BCF中,
平面ADE⊥平面CDEF,
平面ADE∩平面CDEF=DE.∴AH⊥平面CDEF.
∴多面體A﹣CDEF是以AH為高,以矩形CDEF為底面的棱錐,在△ADE中,AH= .
S矩形CDEF=DEEF=4 ,
∴棱錐A﹣CDEF的體積為
V= S矩形CDEFAH= ×4 × =
【解析】由三視圖可知,該多面體是底面為直角三角形的直三棱柱ADE﹣BCF,且底面是一個(gè)直角三角形,由三視圖中所標(biāo)數(shù)據(jù)易計(jì)算出三棱柱中各棱長(zhǎng)的值.(1)取BF的中點(diǎn)G,連接MG、NG,利用中位線的性質(zhì)結(jié)合線面平行的充要條件,易證明結(jié)論(2)多面體A﹣CDEF的體積是一個(gè)四棱錐,由三視圖易求出棱錐的底面面積和高,進(jìn)而得到棱錐的體積.
【考點(diǎn)精析】掌握簡(jiǎn)單空間圖形的三視圖和直線與平面平行的判定是解答本題的根本,需要知道畫三視圖的原則:長(zhǎng)對(duì)齊、高對(duì)齊、寬相等;平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=lnx+x2﹣bx.
(1)若函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)當(dāng)b=﹣1時(shí),設(shè)g(x)=f(x)﹣2x2 , 求證函數(shù)g(x)只有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)若的極小值為,求的值;
(Ⅱ)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,且有2sinBcosA=sinAcosC+cosAsinC. (Ⅰ)求角A的大;
(Ⅱ)若b=2,c=1,D為BC的中點(diǎn),求AD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:方程有實(shí)根;
(2)在上是單調(diào)遞減函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),關(guān)于的不等式的解集為空集,求所有滿足條件的實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了探索一種新的教學(xué)模式,進(jìn)行了一項(xiàng)課題實(shí)驗(yàn),甲班為實(shí)驗(yàn)班,乙班為對(duì)比班,甲乙兩班的人數(shù)均為50人,一年后對(duì)兩班進(jìn)行測(cè)試,測(cè)試成績(jī)的分組區(qū)間為80,90、90,100、100,110、110,120、120,130,由此得到兩個(gè)班測(cè)試成績(jī)的頻率分布直方圖:
(1)完成下面2×2列聯(lián)表,你能有97.5的把握認(rèn)為“這兩個(gè)班在這次測(cè)試中成績(jī)的差異與實(shí)施課題實(shí)驗(yàn)有關(guān)”嗎?并說明理由;
成績(jī)小于100分 | 成績(jī)不小于100分 | 合計(jì) | |
甲班 | 50 | ||
乙班 |
| 50 | |
合計(jì) | 100 |
(2)根據(jù)所給數(shù)據(jù)可估計(jì)在這次測(cè)試中,甲班的平均分是105.8,請(qǐng)你估計(jì)乙班的平均分,并計(jì)算兩班平均分相差幾分?
附:
,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5. 024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在上是減函數(shù),在上是增函數(shù)若函數(shù),利用上述性質(zhì),
Ⅰ當(dāng)時(shí),求的單調(diào)遞增區(qū)間只需判定單調(diào)區(qū)間,不需要證明;
Ⅱ設(shè)在區(qū)間上最大值為,求的解析式;
Ⅲ若方程恰有四解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com