已知函數(shù)f(x)=x|2x-a|(a>0)在區(qū)間[2,4]上單調(diào)遞減,則實(shí)數(shù)a的值是
 
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:去絕對值,討論二次函數(shù)的對稱軸和區(qū)間的關(guān)系,再由集合的包含關(guān)系,得到不等式組,解出即可得到a.
解答: 解:函數(shù)f(x)=x|2x-a|(a>0)
當(dāng)x
a
2
時(shí),f(x)=2x2-ax,對稱軸x=
a
4
,則在[
a
2
,+∞
)上遞增;
當(dāng)x≤
a
2
時(shí),f(x)=-2x2+ax,對稱軸x=
a
4
,則在[
a
4
,
a
2
]上遞減.
由于f(x)在區(qū)間[2,4]上單調(diào)遞減,則
a
4
≤2
,且
a
2
≥4

解得a=8.
故答案為:8.
點(diǎn)評:本題考查函數(shù)的性質(zhì)和運(yùn)用,考查函數(shù)的單調(diào)性及運(yùn)用,注意二次函數(shù)的對稱軸和區(qū)間的關(guān)系,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓C1
x2
a2
+
y2
b2
=1(a>b>0),過點(diǎn)Q(1,
1
2
)作圓C2:x2+y2=1的切線,切點(diǎn)分別為A,B,直線AB恰好經(jīng)過橢圓的右焦點(diǎn)和上頂點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l與圓C2相切于點(diǎn)P,且交橢圓C1于點(diǎn)M,N,求證:∠MON是鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個(gè)圖形中,可以表示函數(shù)關(guān)系y=f(x)的一個(gè)圖是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2-x-1;
(1)求f(x)的解析式;
(2)作出函數(shù)f(x)的圖象(不用列表),并指出它的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x,y滿足約束條件
x+y-2≤0
2y-x+2≥0
2x-y+2≥0
,若z=y-2ax取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)a的值為( 。
A、
1
2
或-1
B、1或-
1
2
C、2或1
D、2或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐P-ABC的所有棱長都相等,現(xiàn)沿PA,PB,PC三條側(cè)棱剪開,將其表面展開成一個(gè)平面圖形,若這個(gè)平面圖形外接圓的半徑為2
6
,則三棱錐P-ABC的內(nèi)切球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=e|x|+x2(e為自然對數(shù)的底數(shù)),且f(3a-2)>f(a-1),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,AB=AC,BC的邊長為2,則
BA
BC
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x3+log2(x+
x2+1
),若a,b∈R,且 f(a)+f(b)≥0,則一定有(  )
A、a+b≤0
B、a+b<0
C、a+b≥0
D、a+b>0

查看答案和解析>>

同步練習(xí)冊答案