【題目】在平面直角坐標系中,已知曲線 為參數(shù)),在以原點為極點, 軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為

(1)求曲線的普通方程和直線的直角坐標方程;

(2)過點且與直線平行的直線, 兩點,求點, 兩點的距離之積.

【答案】(1) ;(2) .

【解析】試題分析:(1)利用三角恒等式消元法消去參數(shù),可求得求圓的普通方程將直線的極坐標方程利用兩角和的余弦定理展開,根據(jù)利用 即可得直線的直角坐標方程; (2)直線的參數(shù)方程代入圓的直角坐標方程,利用韋達定理、直線參數(shù)方程的幾何意義即可求點兩點的距離之積.

試題解析:(1)曲線化為普通方程為,

,得,

所以直線的直角坐標方程為

(2)直線的參數(shù)方程為為參數(shù)),

代入化簡得,

設(shè) 兩點所對應(yīng)的參數(shù)分別為, ,則,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)入射光線沿直線y=2x+1射向直線y=x,則被y=x反射后,反射光線所在的直線方程是(
A.x﹣2y﹣1=0
B.x﹣2y+1=0
C.3x﹣2y+1=0
D.x+2y+3=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(1)當時,求證

(2)對任意,存在,使成立,求的取值范圍.(其中是自然對數(shù)的底數(shù),

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, 的導函數(shù).

Ⅰ)求的極值;

Ⅱ)若時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心在直線y=4x上,且與直線l:x+y﹣2=0相切于點P(1,1).
(1)求圓的方程;
(2)直線kx﹣y+3=0與該圓相交于A、B兩點,若點M在圓上,且有向量 (O為坐標原點),求實數(shù)k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0),上的點M(1,m)到其焦點F的距離為2,
(1)求C的方程;并求其準線方程;
(2)已知A (1,﹣2),是否存在平行于OA(O為坐標原點)的直線L,使得直線L與拋物線C有公共點,且直線OA與L的距離等于 ?若存在,求直線L的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖給出的是計算 的值的一個程序框圖,判斷其中框內(nèi)應(yīng)填入的條件是(

A.i>10
B.i<10
C.i>20
D.i<20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|>m對一切實數(shù)x均成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1+kx),其中a>0且a≠1. (Ⅰ)當k=﹣2時,求函數(shù)h(x)=f(x)+g(x)的定義域;
(Ⅱ)若函數(shù)H(x)=f(x)﹣g(x)是奇函數(shù)(不為常函數(shù)),求實數(shù)k的值.

查看答案和解析>>

同步練習冊答案