【題目】設(shè)函數(shù),其中,,為常數(shù).
(1)若,,試討論函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在上單調(diào)遞增,且,證明:,并求的最小值(用,的代數(shù)式表示).
【答案】(1)答案見解析;(2)證明見解析.
【解析】
試題分析:
(1)函數(shù)的定義域為,求導(dǎo)可得.據(jù)此分類討論:
若,,在上單調(diào)遞增;
若,,在上單調(diào)遞減;
若,,在上單調(diào)遞減,在上單調(diào)遞增;
若,,在上單調(diào)遞增,在上單調(diào)遞減;
(2)函數(shù)在上單調(diào)遞增,則對任意實數(shù)均成立,
取實數(shù),,有,據(jù)此討論可得.
證明問題來說明c的最小值為:
構(gòu)造函數(shù),,可證明,則恒成立,據(jù)此可得成立.
試題解析:
(1)解:依題意得的定義域為,當(dāng)時,.
若,,則,從而在上單調(diào)遞增;
若,,則,從而在上單調(diào)遞減;
若,,令,得,列表如下:
極小值 |
若,,令得,列表如下:
極大值 |
(2)證明:函數(shù)在上單調(diào)遞增,則對任意實數(shù)均成立,
取實數(shù),,則兩式相加得:,
令,則,從而.
又由,當(dāng)時,,若,則不恒成立,又,從而,從而.
下證.
記,,,由于,
在點處的切線方程為:.
接下來,我們證明,
構(gòu)造函數(shù),.
當(dāng)時,,單調(diào)遞減;
當(dāng)時,,單調(diào)遞增;
從而,故成立.
考慮到直線與直線斜率相等,即它們平行,
又由于恒成立,從而恒成立,
即,即.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列,其中的公差不為0.設(shè)是數(shù)列的前n項和.若,,是數(shù)列的前3項,且.
(1)求數(shù)列和的通項公式;
(2)若數(shù)列為等差數(shù)列,求實數(shù)t;
(3)構(gòu)造數(shù)列,,,,,,,,,…,,,,…,,….若該數(shù)列前n項和,求n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在定義域內(nèi)存在實數(shù),使得成立,則稱函數(shù)有“飄移點”.
Ⅰ試判斷函數(shù)及函數(shù)是否有“飄移點”并說明理由;
Ⅱ若函數(shù)有“飄移點”,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準(zhǔn)保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,且保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和費率浮動比率表 | ||
浮動因素 | 浮動比率 | |
A1 | 上一個年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% |
A2 | 上兩個年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% |
A3 | 上三個及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% |
A4 | 上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% |
A6 | 上一個年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機構(gòu)調(diào)查的頻率一致,完成下列問題:
①若該銷售商店內(nèi)有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機挑選2輛車,求這2輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進(jìn)120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯誤的是( )
A.先把高二年級的2000名學(xué)生編號:1到2000,再從編號為1到50的學(xué)生中隨機抽取1名學(xué)生,其編號為,然后抽取編號為,,,……的學(xué)生,這種抽樣方法是系統(tǒng)抽樣法.
B.一組數(shù)據(jù)的方差為,平均數(shù)為,將這組數(shù)據(jù)的每一個數(shù)都乘以2,所得的一組新數(shù)據(jù)的方差和平均數(shù)為,.
C.若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的值越接近于1.
D.若一組數(shù)據(jù)1,,3的平均數(shù)是2,則該組數(shù)據(jù)的方差是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷的單調(diào)性,并說明理由;
(2)判斷的奇偶性,并用定義證明;
(3)若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快餐代賣店代售多種類型的快餐,深受廣大消費者喜愛.其中,種類型的快餐每份進(jìn)價為元,并以每份元的價格銷售.如果當(dāng)天20:00之前賣不完,剩余的該種快餐每份以元的價格作特價處理,且全部售完.
(1)若該代賣店每天定制份種類型快餐,求種類型快餐當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:份,)的函數(shù)解析式;
(2)該代賣店記錄了一個月天的種類型快餐日需求量(每天20:00之前銷售數(shù)量)
日需求量 | ||||||
天數(shù) |
(i)假設(shè)代賣店在這一個月內(nèi)每天定制份種類型快餐,求這一個月種類型快餐的日利潤(單位:元)的平均數(shù)(精確到);
(ii)若代賣店每天定制份種類型快餐,以天記錄的日需求量的頻率作為日需求量發(fā)生的概率,求種類型快餐當(dāng)天的利潤不少于元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 經(jīng)過橢圓: 的左右焦點,且與橢圓在第一象限的交點為,且三點共線,直線交橢圓于, 兩點,且().
(1)求橢圓的方程;
(2)當(dāng)三角形的面積取得最大值時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com