若對任意一點(diǎn)O和不共線的三點(diǎn)A、B、C有
OP
=x
OA
+y
OB
+z
OC
,則x+y+z=1是四點(diǎn)P、A、B、C共面的( 。
A、必要不充分條件
B、充分不必要條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:利用空間四點(diǎn)P、A、B、C共面的充要條件即可判斷出.
解答: 解:對任意一點(diǎn)O和不共線的三點(diǎn)A、B、C有
OP
=x
OA
+y
OB
+z
OC
,x+y+z=1?四點(diǎn)P、A、B、C共面;
因此x+y+z=1是四點(diǎn)P、A、B、C共面的充要條件.
故選:C.
點(diǎn)評:本題考查了空間四點(diǎn)P、A、B、C共面的充要條件,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正方體的四個頂點(diǎn)構(gòu)成的幾何體的三視圖如圖,若各視圖均為邊長為2的正方形,則這個幾何體的體積是(  )
A、
4
3
B、
8
3
C、
16
3
D、
20
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB是半圓O的直徑,AB=8,M,N,P是將半圓圓周四等分的三個分點(diǎn),從A,B,M,N,P這5個點(diǎn)中任取3個點(diǎn),則這3個點(diǎn)組成直角三角形的概率為( 。
A、
7
10
B、
1
2
C、
3
10
D、
1
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過定點(diǎn)(1,2)一定可作兩條直線與圓x2+y2+kx+2y+k2-15=0相切,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地綠化治理沙漠需要大量用水,第1年的用水量約為100(百噸),第2年的用水量約為120(百噸).該地政府綜合各種因素預(yù)測:①每年的用水量會逐年增加;②每年的用水量都不能達(dá)到130(百噸).某校數(shù)學(xué)興趣小組想找一個函數(shù)y=f(x)來擬合該項(xiàng)目第x(x≥1)年與當(dāng)年的用水量y(單位:百噸)之間的關(guān)系,則函數(shù)y=f(x)必須符合預(yù)測①:f(x)在[1,+∞)上單調(diào)遞增;預(yù)測②:f(x)<130對x∈[1,+∞)恒成立.
(1)若f(x)=
m
x
+n,試確定m,n的值,并考察該函數(shù)是否符合上述兩點(diǎn)預(yù)測;
(2)若f(x)=a•bx+c(b>0,b≠1),欲使得該函數(shù)符合上述兩點(diǎn)預(yù)測,試確定b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷:
①若p:|x|≥0(x∈R),q:x+
1
x
≥2(x∈R),則p∧q是真命題;
②若p:a+c>b+c,q:a>b,(a,b,c∈R),則p是q的充分必要條件;
③若p:?x≤0,2x>0,則?p:?x0>0,2x0≤0.
其中正確的是(  )
A、①②B、②③C、②D、③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg
a-x
10+x
,其定義域?yàn)閇-9,9],且在定義域上是奇函數(shù),a∈R
(1)求a的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用函數(shù)單調(diào)性定義證明你的結(jié)論;
(3)若函數(shù)g(x)=|f(x)+1|-m有兩個零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,且滿足acosA=bcosB,那么△ABC的形狀一定是 ( 。
A、等腰三角形
B、直角三角形
C、等腰或直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

條件p:
1
x-3
+1<0,條件q:|x+1|>2,則¬p是¬q的
 
條件(填充分不必要,必要不充分,充要條件)

查看答案和解析>>

同步練習(xí)冊答案