分析 (1)欲證MN∥平面PAD,根據(jù)直線與平面平行的判定定理可知只需證MN與平面PAD內(nèi)一直線平行即可,設PD的中點為E,連接AE、NE,易證AMNE是平行四邊形,則MN∥AE,而AE?平面PAD,NM?平面PAD,滿足定理所需條件;
(2)欲證平面PMC⊥平面PCD,根據(jù)面面垂直的判定定理可知在平面PMC內(nèi)一直線與平面PCD垂直,而AE⊥PD,CD⊥AE,PD∩CD=D,根據(jù)線面垂直的判定定理可知AE⊥平面PCD,而MN∥AE,則MN⊥平面PCD,又MN?平面PMC,滿足定理所需條件.
解答 證明:(1)設PD的中點為E,連接AE、NE,
由N為PC的中點知EN平行且等于$\frac{1}{2}$DC,
又ABCD是矩形,∴DC平行且等于AB,∴EN平行且等于$\frac{1}{2}$AB
又M是AB的中點,∴EN平行且等于AM,
∴AMNE是平行四邊形
∴MN∥AE,而AE?平面PAD,NM?平面PAD,
∴MN∥平面PAD;
(2)∵PA=AD,∴AE⊥PD,
又∵PA⊥平面ABCD,CD?平面ABCD,
∴CD⊥PA,而CD⊥AD,∴CD⊥平面PAD
∴CD⊥AE,∵PD∩CD=D,∴AE⊥平面PCD,
∵MN∥AE,∴MN⊥平面PCD,
又MN?平面PMC,
∴平面PMC⊥平面PCD.
點評 本題主要考查平面與平面垂直的判定,以及線面平行的判定,綜合考查了學生的空間想象能力和思維能力,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x-2y+2=0 | B. | 2x+y-6=0 | C. | x+2y-2=0 | D. | 2x-y+6=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{{2}^{n}}$ | B. | n+$\frac{1}{{2}^{n}}$ | C. | n-$\frac{1}{{2}^{n}}$+1 | D. | n2-2n-$\frac{1}{{2}^{n}}$+1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com