9.設(shè)函數(shù)f(x)=2ln(x-1)-(x-1)2
(1)求f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)+x2-3x-a=0在區(qū)間[2,4]內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)a的取值范圍.

分析 (1)確定出函數(shù)的定義域是解決本題的關(guān)鍵,利用導(dǎo)數(shù)作為工具,求出該函數(shù)的單調(diào)區(qū)間即可;
(2)方法一:利用函數(shù)思想進(jìn)行方程根的判定問題是解決本題的關(guān)鍵.構(gòu)造函數(shù),研究構(gòu)造函數(shù)的性質(zhì)尤其是單調(diào)性,列出該方程有兩個(gè)相異的實(shí)根的不等式組,求出實(shí)數(shù)a的取值范圍.
方法二:先分離變量再構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)為工具研究構(gòu)造函數(shù)的單調(diào)性,根據(jù)題意列出關(guān)于實(shí)數(shù)a的不等式組進(jìn)行求解.

解答 解:(1)函數(shù)f(x)的定義域?yàn)椋?,+∞),
∵f′(x)=2[$\frac{1}{x-1}$-(x-1)]=-$\frac{2x(x-2)}{x-1}$,
∵x>1,則使f'(x)>0的x的取值范圍為(1,2),
令f′(x)<0,解得:x>2,
故函數(shù)f(x)的單調(diào)遞增區(qū)間為(1,2),遞減區(qū)間是(2,+∞);
(2)方法1:∵f(x)=2ln(x-1)-(x-1)2
∴f(x)+x2-3x-a=0?x+a+1-2ln(x-1)=0.
令g(x)=x+a+1-2ln(x-1),
∵g'(x)=1-$\frac{2}{x-1}$=$\frac{x-3}{x-1}$,且x>1,
由g'(x)>0得x>3,g'(x)<0得1<x<3.
∴g(x)在區(qū)間[2,3]內(nèi)單調(diào)遞減,在區(qū)間[3,4]內(nèi)單調(diào)遞增,
故f(x)+x2-3x-a=0在區(qū)間[2,4]內(nèi)恰有兩個(gè)相異實(shí)根
?$\left\{\begin{array}{l}{g(2)≥0}\\{g(3)<0}\\{g(4)≥0}\end{array}\right.$即 $\left\{\begin{array}{l}{a+3≥0}\\{a+4-2ln2<0}\\{a+5-2ln3≥0}\end{array}\right.$解得:2ln3-5≤a<2ln2-4.
綜上所述,a的取值范圍是[2ln3-5,2ln2-4).
方法2:∵f(x)=2ln(x-1)-(x-1)2,
∴f(x)+x2-3x-a=0?x+a+1-2ln(x-1)=0.
即a=2ln(x-1)-x-1,令h(x)=2ln(x-1)-x-1,
∵h(yuǎn)'(x)=$\frac{2}{x-1}$-1=$\frac{3-x}{x-1}$,且x>1,
由h'(x)>0得1<x<3,h'(x)<0得x>3.
∴h(x)在區(qū)間[2,3]內(nèi)單調(diào)遞增,在區(qū)間[3,4]內(nèi)單調(diào)遞減.
∵h(yuǎn)(2)=-3,h(3)=2ln2-4,h(4)=2ln3-5,又h(2)<h(4),
故f(x)+x2-3x-a=0在區(qū)間[2,4]內(nèi)恰有兩個(gè)相異實(shí)根?h(4)≤a<h(3).
即2ln3-5≤a<2ln2-4.
綜上所述,a的取值范圍是[2ln3-5,2ln2-4).

點(diǎn)評 本題考查導(dǎo)數(shù)的工具作用,考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的知識(shí).考查學(xué)生對方程、函數(shù)、不等式的綜合問題的轉(zhuǎn)化與化歸思想,將方程的根的問題轉(zhuǎn)化為函數(shù)的圖象交點(diǎn)問題,屬于綜合題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在多面體A1C1D1-ABCD中,平面A1C1D1∥平面ABCD,AA1∥DD1∥CC1,AA1⊥平面ABCD,四邊形為矩形,AD=1,DC=2,DD1=3.
(1)已知$\overrightarrow{{A}_{1}E}$=λ$\overrightarrow{{A}_{1}{C}_{1}}$,且DE⊥A1C1,求實(shí)數(shù)λ的值;
(2)已知H是平面A1BC1內(nèi)的點(diǎn),求DH的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知△ABC的頂點(diǎn)A(5,1),AB邊上的中線CM所在直線方程為2x-y-5=0,∠B的平分線BN所在直線方程為x-2y-5=0.求:
(1)頂點(diǎn)B的坐標(biāo);
(2)直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,四棱錐P-ABCD中,底面ABCD是矩形,PA=AD,PA⊥平面ABCD,M、N分別是AB、PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)求證:平面PMC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點(diǎn)P是雙曲線$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2為該雙曲線的左右焦點(diǎn),O為坐標(biāo)原點(diǎn),則$\frac{|P{F}_{1}|+|P{F}_{2}|}{|OP|}$的最大值為( 。
A.2$\sqrt{2}$B.2C.$\sqrt{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=$\frac{\frac{1}{6}•(-1)^{1+{C}_{2x}^{x}}•{A}_{x+2}^{5}}{1+{C}_{3}^{2}+{C}_{4}^{2}+…+{C}_{x-1}^{2}}$ (x∈N)的最大值是-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}為等比數(shù)列,Sn是它的前n項(xiàng)和.設(shè)Tn=S1+S2+…+Sn,若a2•a3=2a1,且a4與2a7的等差中項(xiàng)為$\frac{5}{4}$,則T6=160.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,正方形ABCD中,M,N分別是BC,CD的中點(diǎn),若$\overrightarrow{AC}$=λ$\overrightarrow{AM}$+μ$\overrightarrow{BN}$,則λ-3μ=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.橢圓E:$\frac{x^2}{4}+\frac{y^2}{3}=1$的右頂點(diǎn)為B,過E的右焦點(diǎn)作斜率為1的直線L與E交于M,N兩點(diǎn),則△MBN的面積為$\frac{6\sqrt{2}}{7}$,.

查看答案和解析>>

同步練習(xí)冊答案