13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,}&{x<0}\\{-\frac{1}{x},}&{x>0}\end{array}\right.$的圖象上存在不同的兩點(diǎn)A、B,使得曲線y=f(x)在這兩點(diǎn)處的切線重合,則點(diǎn)A的橫坐標(biāo)的取值范圍可能是( 。
A.(-$\frac{1}{2}$,0)B.(-1,-$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

分析 先根據(jù)導(dǎo)數(shù)的幾何意義寫出函數(shù)f(x)在點(diǎn)A、B處的切線方程,再利用兩直線重合的充要條件:斜率相等且縱截距相等,列出關(guān)系式,求得$\frac{1}{4}$x14-2x1-1=0,由零點(diǎn)存在定理,判斷A,B,再由關(guān)系式,確定x2的范圍,即可判斷C,D.

解答 解:當(dāng)x<0時(shí),f(x)=x2+x的導(dǎo)數(shù)為f′(x)=2x+1;
當(dāng)x>0時(shí),f(x)=-$\frac{1}{x}$的導(dǎo)數(shù)為f′(x)=$\frac{1}{{x}^{2}}$,
設(shè)A(x1,f(x1)),B(x2,f(x2))為該函數(shù)圖象上的兩點(diǎn),且x1<x2,
當(dāng)x1<x2<0,或0<x1<x2時(shí),f′(x1)≠f′(x2),故x1<0<x2,
當(dāng)x1<0時(shí),函數(shù)f(x)在點(diǎn)A(x1,f(x1))處的切線方程為
y-(x12+x1)=(2x1+1)(x-x1);
當(dāng)x2>0時(shí),函數(shù)f(x)在點(diǎn)B(x2,f(x2))處的切線方程為y+$\frac{1}{{x}_{2}}$=$\frac{1}{{{x}_{2}}^{2}}$(x-x2).
兩直線重合的充要條件是$\frac{1}{{{x}_{2}}^{2}}$=2x1+1①,-$\frac{2}{{x}_{2}}$=-x12②,
由x1<0<x2得0<$\frac{1}{{x}_{2}}$<1,
由①②可得$\frac{1}{4}$x14-2x1-1=0,
設(shè)f(x)=$\frac{1}{4}$x4-2x-1,由f(-$\frac{1}{2}$)=$\frac{1}{64}$>0,f(0)=-1<0,
可得x1∈(-$\frac{1}{2}$,0),A可能;
由f(-1)=$\frac{5}{4}$>0,B不正確;
由①可得x2>1,由②可得$\frac{2}{{x}_{2}}$=x12<$\frac{1}{4}$,即有x2>8,
則C,D不正確.
故選:A.

點(diǎn)評 本題主要考查了導(dǎo)數(shù)的幾何意義等基礎(chǔ)知識,考查了推理論證能力、運(yùn)算能力、創(chuàng)新意識,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=xlnx.
(Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若關(guān)于x的不等式f(x)≤λ(x2-1)對任意x∈[1,+∞)恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在四面體ABCD中,二面角A-BC-D為60°,點(diǎn)P為直線BC上一動點(diǎn),記直線PA與平面BCD所成的角為θ,則(  )
A.θ的最大值為60°B.θ的最小值為60°C.θ的最大值為30°D.θ的最小值為30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2x-6,則f(f(2))=( 。
A.-$\frac{23}{4}$B.$\frac{23}{4}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)A(1,1)、B(7,4),點(diǎn)C滿足$\overrightarrow{AC}$=2$\overrightarrow{CB}$,則點(diǎn)C的坐標(biāo)是( 。
A.(3,2)B.(3,5)C.(5,3)D.(8,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-4x+2(1-a)lnx,(a∈R且a≠0).
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)f(x)在區(qū)間[e,+∞]上的單調(diào)性;
(Ⅱ)當(dāng)a>2時(shí),求函數(shù)f(x)在區(qū)間[e,+∞]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)對定義域內(nèi)的任意x1,x2,當(dāng)f(x1)=f(x2)時(shí),總有x1=x2,則稱函數(shù)f(x)為單純函數(shù),例如函數(shù)f(x)=x是單純函數(shù),但函數(shù)f(x)=x2不是單純函數(shù).若函數(shù)$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\-{x^2}+m,x>0\end{array}\right.$為單純函數(shù),則實(shí)數(shù)m的取值范圍是m≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)曲線y=xn+1(n∈N+)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,則log2017x1+log2017x2+…+log2017x2016的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}的前5項(xiàng)和為105,且a10=2a5,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊答案