分析 根據(jù)題意,分3步進行分析:①、先分析A區(qū)域,可以在5種顏色中選1種,②、對于B區(qū)域,需要在剩下的4種顏色種任選1種,③、對于C、D區(qū)域,分“D區(qū)域與B區(qū)域同色”和“D區(qū)域與B區(qū)域不同色”兩種情況討論即可,由分步計數(shù)原理計算可得答案.
解答 解:根據(jù)題意,分3步進行分析:
①、對于A區(qū)域,可以在5種顏色中選1種,即有5種情況,
②、對于B區(qū)域,需要在剩下的4種顏色種任選1種,即有4種情況,
③、對于C、D區(qū)域,
若D區(qū)域與B區(qū)域同色,C區(qū)域可以在剩下的4種顏色種任選1種,即有4種情況,
若D區(qū)域與B區(qū)域不同色,則D區(qū)域需要在除A、B的顏色外的3種顏色種任選1種,即有3種情況,
C區(qū)域可以在除B、D的顏色外的3種顏色種任選1種,即有3種情況,
則C、D區(qū)域有4+3×3=13種情況;
則不同的安排方法種數(shù)5×4×13=260種;
故答案為:260.
點評 本題考查排列、組合的應用,關鍵是根據(jù)題意,如何分步分析和分類討論.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 150° | B. | 60° | C. | 120° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 120 | B. | 60 | C. | 36 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com