14.已知f(n)=in-i-n(n∈N*),則集合{f(n)}的元素個數(shù)是( 。
A.2B.3C.4D.無數(shù)個

分析 利用i的冪運算,通過n的取值,求解即可.

解答 解:因為in的周期為4,所以n=1時,f(n)=i1-i-1=2i;n=2時,f(n)=i2-i-2=0;n=3時,f(n)=i3-i-3=-2i;n=4時,f(n)=i4-i-4=0;
則集合{f(n)}的元素個數(shù)是:3個.
故選:B.

點評 本題考查復數(shù)的單位的冪運算,集合的元素個數(shù)的最值,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.已知邊c=2,且asinA-asinB=2sinC-bsinB.
(1)若sinC+sin(B-A)=sin2A,求△ABC的面積;
(2)記AB邊的中點為M,求|CM|的最大值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若復數(shù)z=1-2i,則z+$\frac{1}{z}$在復平面上對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.883+6被49除所得的余數(shù)是0(請用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知橢圓方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點P(0,1),且離心率e=$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓方程;
(2)過原點的直線交橢圓于B,C兩點,A(1,$\frac{1}{2}$),求△ABC面積最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求函數(shù)f(x)=$\frac{1}{3}a{x^3}-\frac{1}{2}(a+1){x^2}$+x(a∈R)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知拋物線E:y2=4x的焦點為F,點C(-1,0),過點F的直線l與拋物線E相交于A,B兩點,若AB⊥BC,則|AF|-|BF|=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某中學擬在高一下學期開設(shè)游泳選修課,為了了解高一學生喜歡游泳是否與性別有關(guān),該學校對100名高一新生進行了問卷調(diào)查,得到如下2×2列聯(lián)表:
喜歡游泳不喜歡游泳合計
男生10
女生20
合計
已知在這100人中隨機抽取1人抽到喜歡游泳的學生的概率為$\frac{3}{5}$.
(1)請將上述列聯(lián)表補充完整;
(2)并判斷是否有99%的把握認為喜歡游泳與性別有關(guān)?并說明你的理由;
(3)已知在被調(diào)查的學生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學生中隨機抽取2人,求恰好有1人喜歡游泳的概率.
下面是臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
參考公式:K2的觀測值:$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+2)(a+c)(b+d)}$(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若a=$\frac{ln3}{3}$,b=$\frac{ln5}{5}$,c=$\frac{ln6}{6}$,則( 。
A.a<b<cB.c<b<aC.c<a<bD.b<a<c

查看答案和解析>>

同步練習冊答案