【題目】設(shè)函數(shù)f(x)=|x﹣2|﹣|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2﹣t在x∈[﹣2,﹣1]時恒成立,求實數(shù)t的取值范圍.

【答案】解:(Ⅰ)x≤﹣ 時,x+3≤x,不成立;
<x<2時,﹣3x+1≤x,解得x≥ ,∴ ≤x<2;
x≥2時,﹣x﹣3≤x,∴x≥﹣ ,∴x≥2,
綜上所述,不等式f(x)≤x的解集為[ ,+∞);
(II )x∈[﹣2,﹣1]時,f(x)=x+3,最小值為1.
∵不等式f(x)≥t2﹣t在x∈[﹣2,﹣1]時恒成立,
∴t2﹣t≤1,
≤t≤
【解析】(Ⅰ)根據(jù)絕對值的幾何運用,分類討論,求得f(x)≤x的解集.(Ⅱ)x∈[﹣2,﹣1]時,f(x)=x+3,最小值為1,再根據(jù)t2﹣t≤1,求得實數(shù)t的取值范圍.
【考點精析】掌握絕對值不等式的解法是解答本題的根本,需要知道含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2﹣4ρsinθ+3=0,A、B兩點極坐標(biāo)分別為(1,π)、(1,0).
(1)求曲線C的參數(shù)方程;
(2)在曲線C上取一點P,求|AP|2+|BP|2的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機詢問110名性別不同的大學(xué)生是否愛好某項運動,得到如下的列聯(lián)表:

總計

愛好

40

20

60

不愛好

20

30

50

總計

60

50

110

算得,

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

參照附表,得到的正確結(jié)論是(
A.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運動與性別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運動與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項運動與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項運動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 +y2=1,A,B,C,D為橢圓上四個動點,且AC,BD相交于原點O,設(shè)A(x1 , y1),B(x2 , y2)滿足 =
(1)求證: + = ;
(2)kAB+kBC的值是否為定值,若是,請求出此定值,并求出四邊形ABCD面積的最大值,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法中錯誤的是

A. 在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等 .

B. 一個樣本的方差是,則這組數(shù)據(jù)的總和等于60.

C. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越差.

D. 對于命題使得0,則,使.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;

(2)已知在定義域上為減函數(shù),若對任意的,不等式為常數(shù))恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們?yōu)榱颂骄亢瘮?shù)的部分性質(zhì),先列表如下:

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

8.5

5

4.17

4.05

4.005

4

4.004

4.02

4.04

4.3

5

5.8

7.57

觀察表中值隨值變化的特點,完成以下的問題.

首先比較容易看得出來:此函數(shù)在區(qū)間上是遞減的;

(1)函數(shù)在區(qū)間 上遞增

當(dāng) 時,= .

(2)請你根據(jù)上面性質(zhì)作出此函數(shù)的大概圖像;

(3)試用函數(shù)單調(diào)性的定義證明:函數(shù)在區(qū)間上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)求在區(qū)間上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情況如上:

所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.

(Ⅱ)當(dāng),即時,函數(shù)上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時,

由(Ⅰ)知上單調(diào)遞減,在上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時,函數(shù)上單調(diào)遞減,

所以在區(qū)間上的最小值為.

綜上,當(dāng)時,的最小值為;

當(dāng)時,的最小值為

當(dāng)時,的最小值為.

型】解答
結(jié)束】
19

【題目】已知拋物線的頂點在原點,焦點在坐標(biāo)軸上,點為拋物線上一點.

1)求的方程;

2)若點上,過的兩弦,若,求證: 直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的最大值;

(2)當(dāng)時,函數(shù)有最小值. 的最小值為,求函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊答案