分析 (1)推導出∠EAB=60°,且AD⊥BE,AD⊥PE,從而AD⊥平面PBE,進而AD⊥PB,由此能證明PB⊥BC.
(2)過P作PO⊥平面ABCD,交BE延長線于O,以O(shè)為坐標原點,過O作DA的平行線為x軸,OB為y軸,OP為z軸,建立空間直角坐標系,利用向量法能求出二面角二面角A-PB-C的余弦值.
解答 證明:(1)由BE=PE,AB=PA,AE=AE,得△AEP≌△AEB,
∴∠EAB=60°,且AD⊥BE,
又∵AD⊥PE,
∴AD⊥平面PBE,
∵PB?平面PBE,得AD⊥PB,
又AD∥BC,
∴PB⊥BC.
解:(2)如圖,過P作PO⊥平面ABCD,交BE延長線于O,
以O(shè)為坐標原點,過O作DA的平行線為x軸,OB為y軸,OP為z軸,建立空間直角坐標系,
P(0,0,$\frac{3}{2}$),B(0,$\frac{3\sqrt{3}}{2}$,0),PB的中占點G(0,$\frac{3\sqrt{3}}{4}$,$\frac{3}{4}$),連結(jié)AG,
又A(1,$\frac{\sqrt{3}}{2}$,0),C(-2,$\frac{3\sqrt{3}}{4}$,0),由此得到$\overrightarrow{GA}$=(1,-$\frac{\sqrt{3}}{4}$,-$\frac{3}{4}$),
$\overrightarrow{PB}$=(0,$\frac{3\sqrt{3}}{2},-\frac{3}{2}$),$\overrightarrow{BC}$=(-2,0,0),
∴$\overrightarrow{GA}•\overrightarrow{PB}$=0,$\overrightarrow{BC}•\overrightarrow{PB}$=0,
∴$\overrightarrow{GA}⊥\overrightarrow{PB}$,$\overrightarrow{BC}⊥\overrightarrow{PB}$,
∵$\overrightarrow{GA},\overrightarrow{BC}$的夾角為θ等于所求二面角二面角A-PB-C的平面角,
∴cos$θ=cos<\overrightarrow{GA},\overrightarrow{PB}>$=$\frac{\overrightarrow{GA}•\overrightarrow{BC}}{|\overrightarrow{GA}|•|\overrightarrow{BC}|}$=-$\frac{2\sqrt{7}}{7}$.
∴二面角A-PB-C的余弦值為-$\frac{2\sqrt{7}}{7}$.
點評 本題考查異面直線垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,$\frac{1}{e}$) | B. | (0,$\frac{1}{e}$) | C. | (-∞,e) | D. | (e,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,5] | B. | [-2,4] | C. | [-1,1] | D. | [-5,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 0 | 2 | 1 | 3 | 3 | 4 |
A. | (1,0) | B. | (2,2) | C. | ($\frac{7}{2}$,$\frac{13}{6}$) | D. | (3,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
月份x | 1 | 2 | 3 | 4 |
用水量y | 4.5 | a | 3 | 2.5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,5] | B. | [-1,4] | C. | (2,6) | D. | (0,5) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com