年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
y2 |
a2 |
x2 |
b2 |
a2 |
|OM|2 |
b2 |
|ON|2 |
25 |
16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知可行域的外接圓C與軸交于點A1、A2,橢圓C1以線段A1A2為短軸,離心率
(Ⅰ)求圓C及橢圓C1的方程;
(Ⅱ)過橢圓C1上一點P(不在坐標(biāo)軸上)向圓C引兩條切線PA、PB、A、B為切點,直線AB分別與x軸、y軸交于點M、N.求△MON面積的最小值.(O為原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年天津市寶坻區(qū)高三綜合模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,圓與離心率為的橢圓()相切于點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點引兩條互相垂直的兩直線、與兩曲線分別交于點、與點、(均不重合).
(ⅰ)若為橢圓上任一點,記點到兩直線的距離分別為、,求的最大值;
(ⅱ)若,求與的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)若x1=-1,x2=2,求函數(shù)f(x)的解析式;
(2)若|x1|+|x2|=,求b的最大值;
(3)若x1<x<x2,且x2=a,函數(shù)g(x)=f′(x)-a(x-x1),求證:|g(x)|≤a(3a+2)2.
(文)如圖,N為圓x2+(y-2)2=4上的點,OM為直徑,連結(jié)MN并延長交x軸于點C,過C引直線垂直于x軸,且與弦ON的延長線交于點D.
(1)已知點N(,1),求點D的坐標(biāo);
(2)若點N沿著圓周運(yùn)動,求點D的軌跡E的方程;
(3)設(shè)P(0,a)(a>0),Q是點P關(guān)于原點的對稱點,直線l過點P交曲線E于A、B兩點,點H在射線QB上,且AH⊥PQ,求證:不論l繞點P怎樣轉(zhuǎn)動,恒有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com