【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.2018年某企業(yè)計劃引進新能源汽車生產(chǎn)設備,通過市場分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價5萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完.
(1)求出2018年的利潤L(x)(萬元)關于年產(chǎn)量x(百輛)的函數(shù)關系式;(利潤=銷售額-成本)
(2)2018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.
【答案】(1);(2)生產(chǎn)100百輛時,該企業(yè)獲得利潤最大,且最大利潤為1800萬元.
【解析】
(1)根據(jù)利潤的定義,結(jié)合投入成本是分段函數(shù),分類討論求得利潤函數(shù).
(2)根據(jù)第一問利潤函數(shù),分和兩種情況進行分類討論,當時,用二次函數(shù)法求最值,當時,用基本不等式法求最值,然后這兩段中取最大的為函數(shù)的最大值即最大利潤,此時x的取值為最大利潤時的產(chǎn)量.
(1)當時,;
當時,;
∴.
(2)當時,,
∴當時,;
當時,,
當且僅當,即時,;
∴當時,即2018年生產(chǎn)100百輛時,該企業(yè)獲得利潤最大,且最大利潤為1800萬元.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,函數(shù)在區(qū)間上的最小值為-5,求的值;
(Ⅱ)設,且有兩個極值點,.
(i)求實數(shù)的取值范圍;
(ii)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知橢圓的上頂點坐標為,離心率為.
(1)求橢圓的標準方程;
(2)若橢圓上的點的橫坐標為,且位于第一象限,點關于軸的對稱點為點,是位于直線異側(cè)的橢圓上的動點.
①若直線的斜率為,求四邊形面積的最大值;
②若動點滿足,試探求直線的斜率是否為定值?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】吸煙有害健康,遠離煙草,珍惜生命。據(jù)統(tǒng)計一小時內(nèi)吸煙5支誘發(fā)腦血管病的概率為0.02,一小時內(nèi)吸煙10支誘發(fā)腦血管病的概率為0.16.已知某公司職員在某一小時內(nèi)吸煙5支未誘發(fā)腦血管病,則他在這一小時內(nèi)還能繼吸煙5支不誘發(fā)腦血管病的概率為( )
A. B. C. D. 不確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年初,某市為了實現(xiàn)教育資源公平,辦人民滿意的教育,準備在今年8月份的小升初錄取中在某重點中學實行分數(shù)和搖號相結(jié)合的錄取辦法.該市教育管理部門為了了解市民對該招生辦法的贊同情況,隨機采訪了440名市民,將他們的意見和是否近三年家里有小升初學生的情況進行了統(tǒng)計,得到如下的2×2列聯(lián)表.
贊同錄取辦法人數(shù) | 不贊同錄取辦法人數(shù) | 合計 | |
近三年家里沒有小升初學生 | 180 | 40 | 220 |
近三年家里有小升初學生 | 140 | 80 | 220 |
合計 | 320 | 120 | 440 |
(1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯誤的概率不超過0.001的前提下認為是否贊同小升初錄取辦法與近三年是否家里有小升初學生有關;
(2)從上述調(diào)查的不贊同小升初錄取辦法人員中根據(jù)近三年家里是否有小升初學生按分層抽樣抽出6人,再從這6人中隨機抽出3人進行電話回訪,求3人中恰有1人近三年家里沒有小升初學生的概率.
附:,其中.
P() | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個三棱錐是正三棱錐的充要條件是( )
A.底面是正三角形,三個側(cè)面是全等的等腰三角形
B.各個面都是正三角形
C.三個側(cè)面是全等的等腰三角形
D.頂點在底面上的射影為重心
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從金山區(qū)走出去的陳馳博士,在《自然—可持續(xù)性》雜志上發(fā)表的論文中指出:地球正在變綠,中國通過植樹造林和提高農(nóng)業(yè)效率,在其中起到了主導地位.已知某種樹木的高度(單位:米)與生長年限(單位:年,tN*)滿足如下的邏輯斯蒂函數(shù):,其中e為自然對數(shù)的底數(shù). 設該樹栽下的時刻為0.
(1)需要經(jīng)過多少年,該樹的高度才能超過5米?(精確到個位)
(2)在第幾年內(nèi),該樹長高最快?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com