10.如圖是一個(gè)幾何體的三視圖,其中俯視圖中的曲線為四分之一圓,則該幾何體的表面積為( 。
A.3B.$3+\frac{π}{2}$C.4D.$4-\frac{π}{2}$

分析 由已知可得該幾何體是一個(gè)以俯視圖這底面的柱體,根據(jù)柱體表面積公式,可得答案.

解答 解:由已知可得該幾何體是一個(gè)以俯視圖這底面的柱體,
底面積為1-$\frac{π}{4}$,底面周長(zhǎng)為:2+$\frac{π}{2}$,
柱體的高為1,
故該幾何體的表面積S=2×(1-$\frac{π}{4}$)+2+$\frac{π}{2}$=4,
故選:C

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是柱體的體積和表面積計(jì)算,根據(jù)已知中的三視圖,分析出幾何體的形狀,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.等差數(shù)列{an}中,a2+a6=14,則S7=49.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知直線l1:(m+3)x+4y=5和l2:2x+(m+5)y=8,當(dāng)l1⊥l2時(shí),求實(shí)數(shù)m的值$-\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.為了解某一段公路汽車通過(guò)時(shí)的車速情況,現(xiàn)隨機(jī)抽測(cè)了通過(guò)這段公路的200輛汽車的時(shí)速,所得數(shù)據(jù)均在區(qū)間[40,80]中,其頻率分布直方圖如圖所示,則在抽測(cè)的200輛汽車中,時(shí)速在區(qū)間[40,60)內(nèi)的汽車有80輛.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=f(x)(x∈R)滿足:對(duì)一切x∈R,f(x)>0,f(x+1)=$\sqrt{7-{f}^{2}(x)}$時(shí),當(dāng)x∈[0,1)時(shí),f(x)=$\left\{\begin{array}{l}{x+2(0≤x<\sqrt{5}-2)}\\{\sqrt{5}(\sqrt{5}-2≤x<1)}\end{array}\right.$,則f(2017-$\sqrt{3}$)=( 。
A.2$\sqrt{2\sqrt{3}-3}$B.2-$\sqrt{3}$C.2$+\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.將函數(shù)f(x)=sin(3x+φ)(0<φ<π)的圖象向右平移$\frac{π}{12}$個(gè)單位后,所得圖象關(guān)于y軸對(duì)稱,則φ的值為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)函數(shù)f(x)=x-sinx,則函數(shù)f(x)在R上(  )
A.是有零點(diǎn)的減函數(shù)B.是沒(méi)有零點(diǎn)的奇函數(shù)
C.既是奇函數(shù)又是減函數(shù)D.既是奇函數(shù)又是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)f(x)為定義在R上的偶函數(shù),但x≥0時(shí),y=f(x)的圖象是頂點(diǎn)在P(3,4),且過(guò)點(diǎn)A(2,2)的拋物線的一部分.
(1)求函數(shù)f(x)在(-∞,0)上的解析式;
(2)求函數(shù)f(x)在R上的解析式,并畫(huà)出函數(shù)f(x)的圖象;
(3)寫(xiě)出函數(shù)f(x)的單調(diào)區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,已知一座山高BC=80米,為了測(cè)量另一座山高M(jìn)N,和兩山頂之間的距離CM,在A點(diǎn)測(cè)得M點(diǎn)的仰角∠MAN=60°,C點(diǎn)的仰角∠BAC=30°,C、M兩點(diǎn)的張角∠MAC=60°,從C點(diǎn)測(cè)得∠ACM=75°,則MN與CM分別等于多少米(  )
A.40(3+$\sqrt{3}$),140$\sqrt{2}$B.40(3+$\sqrt{3}$),80$\sqrt{6}$C.60($\sqrt{2}$+$\sqrt{3}$),140$\sqrt{2}$D.60($\sqrt{2}$+$\sqrt{3}$),80$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案