12.設(shè)離心率為$\frac{\sqrt{2}}{2}$的橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P是E上一點(diǎn),PF1⊥PF2,△PF1F2內(nèi)切圓的半徑為$\sqrt{2}$-1.
(1)求E的方程;
(2)矩形ABCD的兩頂點(diǎn)C、D在直線y=x+2,A、B在橢圓E上,若矩形ABCD的周長(zhǎng)為$\frac{11\sqrt{2}}{3}$,求直線AB的方程.

分析 (1)由橢圓的離心率求得a=$\sqrt{2}$c,根據(jù)勾股定理及橢圓的定義,求得a-c=$\sqrt{2}$-1.b2=a2-c2=1,即可求得橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l的方程,代入橢圓方程,由韋達(dá)定理及弦長(zhǎng)公式求得丨AB丨,由兩平行之間的距離公式,由矩形的周長(zhǎng)公式2(丨AB丨+d)=$\frac{11\sqrt{2}}{3}$,代入即可求得m的值,求得直線AB的方程.

解答 解:(1)∵離心率為e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,則a=$\sqrt{2}$c,①
由PF1⊥PF2,則丨PF12+丨PF22=丨F1F22=4c2,
由橢圓的定義可知;丨PF1丨+丨PF2丨=2a,則丨F1F22=(丨PF1丨+丨PF2丨)2-2丨PF1丨•丨PF2丨,
∴丨PF1丨•丨PF2丨=2a2-2c2,
,△PF1F2的面積S,S=$\frac{1}{2}$丨PF1丨•丨PF2丨=$\frac{1}{2}$×R×(丨PF1丨+丨PF2丨+丨F1F2丨),
則a-c=$\sqrt{2}$-1.②
由①②解得:a=$\sqrt{2}$,c=1,
b2=a2-c2=1,
∴橢圓E的方程為$\frac{{x}^{2}}{2}+{y}^{2}=1$.
(2)由題意設(shè)直線l的方程:y=x+m,A(x1,y1)、B(x2,y2),
則$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,整理得:3x2+4mx+2m2-2=0,
由△=16m2-4×3(2m2-2)=-2m2+3>0,解得-$\sqrt{3}$<m<$\sqrt{3}$,
由韋達(dá)定理可知:x1+x2=-$\frac{4m}{3}$,x1x2=$\frac{2{m}^{2}-2}{3}$,
則丨AB丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{(-\frac{4m}{3})^{2}-4×\frac{2{m}^{2}-2}{3}}$=$\frac{4\sqrt{3-{m}^{2}}}{3}$,
直線AB,CD之間的距離d=$\frac{丨m-2丨}{\sqrt{1+1}}$=$\frac{\sqrt{2}丨m-2丨}{2}$,
由矩形ABCD的周長(zhǎng)為$\frac{11\sqrt{2}}{3}$,則2(丨AB丨+d)=$\frac{11\sqrt{2}}{3}$,
則2($\frac{4\sqrt{3-{m}^{2}}}{3}$+$\frac{\sqrt{2}丨m-2丨}{2}$)=$\frac{11\sqrt{2}}{3}$,解得:m=1,
則直線AB的方程為y=x+1.

點(diǎn)評(píng) 本題考查橢圓方程標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),直線與橢圓的位置關(guān)系,韋達(dá)定理及弦長(zhǎng)公式,考查推理論證能力、運(yùn)算求解能力,考查等價(jià)轉(zhuǎn)化思想,難度大,對(duì)數(shù)學(xué)思維能力要求較高,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,為了研究某城市2016年的空氣質(zhì)量情況,省環(huán)保局從全年的檢測(cè)數(shù)據(jù)中隨機(jī)抽取了30天進(jìn)行統(tǒng)計(jì),得到莖葉圖如圖所示,則該樣本的中位數(shù)、眾數(shù)、極差分別是( 。
A.76,75,56B.76,75,53C.77,75,56D.75,77,53

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知在△ABC所在平面內(nèi)有兩點(diǎn)P、Q,滿足$\stackrel{→}{PA}$+$\stackrel{→}{PC}$=0,$\stackrel{→}{QA}$+$\stackrel{→}{QB}$+$\stackrel{→}{QC}$=$\stackrel{→}{BC}$,若|$\stackrel{→}{AB}$|=4,|$\stackrel{→}{AC}$|=2,S△APQ=$\frac{2}{3}$,則$\stackrel{→}{AB}$•$\stackrel{→}{AC}$的值為(  )
A.4B.±4C.4$\sqrt{3}$D.±4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓E:x2+$\frac{{y}^{2}}{^{2}}$=1(0<b<1)的左焦點(diǎn)為F,左、右頂點(diǎn)分別為A、C,上頂點(diǎn)為B,過(guò)F、B、C三點(diǎn)作圓P.
(Ⅰ)若圓P的圓心在直線x+y=0上,求橢圓E的方程;
(Ⅱ)若直線y=x+t交(Ⅰ)中橢圓E于M,N,交y軸于Q,求|MN|•|OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.復(fù)數(shù)z1、z2滿足|z1|=|z2|=1,z1-z2=$\frac{2-4i}{2+i}$,則z1•z2=( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.要計(jì)算1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2017}$的結(jié)果,如圖程序框圖中的判斷框內(nèi)可以填( 。
A.n<2017B.n≤2017C.n>2017D.n≥2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=$\frac{sinx}{2+cosx}$,如果當(dāng)x>0時(shí),若函數(shù)f(x)的圖象恒在直線y=kx的下方,則k的取值范圍是(  )
A.[$\frac{1}{3}$,$\frac{\sqrt{3}}{3}$]B.[$\frac{1}{3}$,+∞)C.[$\frac{\sqrt{3}}{3}$,+∞)D.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出i的值為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,已知拋物線E:y2=2px(p>0)與圓O:x2+y2=8相交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為2.過(guò)劣弧AB上動(dòng)點(diǎn)P(x0,y0)作圓O的切線交拋物線E于C,D兩點(diǎn),分別以C,D為切點(diǎn)作拋物線E的切線l1,l2,l1與l2相交于點(diǎn)M.
(1)求拋物線E的方程;
(2)求點(diǎn)M到直線CD距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案