17.要計(jì)算1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2017}$的結(jié)果,如圖程序框圖中的判斷框內(nèi)可以填(  )
A.n<2017B.n≤2017C.n>2017D.n≥2017

分析 通過(guò)觀察程序框圖,分析為填判斷框內(nèi)判斷條件,n的值在執(zhí)行運(yùn)算之后還需加1,故判斷框內(nèi)數(shù)字應(yīng)減1,按照題意填入判斷框即可.

解答 解:通過(guò)分析,本程序框圖為“當(dāng)型“循環(huán)結(jié)構(gòu),
判斷框內(nèi)為滿足循環(huán)的條件,
第1次循環(huán),S=1,n=1+1=2,
第2次循環(huán),S=1+$\frac{1}{2}$,n=2+1=3,

當(dāng)n=2018時(shí),由題意,此時(shí),應(yīng)該不滿足條件,
退出循環(huán),輸出S的值.
所以,判斷框內(nèi)的條件應(yīng)為:n≤2017.
故選:B.

點(diǎn)評(píng) 本題考查程序框圖,通過(guò)對(duì)程序框圖的分析對(duì)判斷框進(jìn)行判斷,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為S,且na${\;}_{n+1}^{2}$=(n+1)a${\;}_{n}^{2}$+anan+1,a1=$\frac{π}{3}$,則tanSn的取值集合是( 。
A.{0,$\sqrt{3}$}B.{0,$\sqrt{3}$,$\frac{\sqrt{3}}{3}$}C.{0,$\sqrt{3}$,$-\frac{\sqrt{3}}{3}$}D.{0,$\sqrt{3}$,-$\sqrt{3}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知△ABC中,3sin2B+7sin2C=2sinAsinBsinC+2sin2A,則sin(A+$\frac{π}{4}$)=-$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若($\frac{1}{2}$x-2y)2n+1的展開(kāi)式中前n+1項(xiàng)的二項(xiàng)式系數(shù)之和為64,則該展開(kāi)式中x4y3的系數(shù)是( 。
A.-$\frac{35}{2}$B.70C.$\frac{35}{2}$D.-70

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)離心率為$\frac{\sqrt{2}}{2}$的橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P是E上一點(diǎn),PF1⊥PF2,△PF1F2內(nèi)切圓的半徑為$\sqrt{2}$-1.
(1)求E的方程;
(2)矩形ABCD的兩頂點(diǎn)C、D在直線y=x+2,A、B在橢圓E上,若矩形ABCD的周長(zhǎng)為$\frac{11\sqrt{2}}{3}$,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.將數(shù)字“124467”重新排列后得到不同的偶數(shù)個(gè)數(shù)為( 。
A.72B.120C.192D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若復(fù)數(shù)z=$\frac{2+i}{1+i}$,其中i為虛數(shù)單位,則復(fù)數(shù)z的虛部是( 。
A.$\frac{3}{2}$B.-$\frac{1}{2}$C.-$\frac{3}{2}$iD.$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知(a-i)2=-2i,其中i是虛數(shù)單位,a是實(shí)數(shù),則|ai|=(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.化簡(jiǎn)$\frac{sin\frac{α}{2}+cos\frac{α+β}{2}sin\frac{β}{2}}{cos\frac{α}{2}-sin\frac{α+β}{2}sin\frac{β}{2}}$=tan$\frac{α+β}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案