【題目】下列四個(gè)結(jié)論:
①在回歸分析模型中,殘差平方和越大,說明模型的擬合效果越好;
②某學(xué)校有男教師60名、女教師40名,為了解教師的體育愛好情況,在全體教師中抽取20名調(diào)查,則宜采用的抽樣方法是分層抽樣;
③線性相關(guān)系數(shù)越大,兩個(gè)變量的線性相關(guān)性越弱;反之,線性相關(guān)性越強(qiáng);
④在回歸方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量增加0.5個(gè)單位.
其中正確的結(jié)論是( )
A. ①②B. ①④
C. ②③D. ②④
【答案】D
【解析】
根據(jù)殘差的意義可判斷①;根據(jù)分成抽樣特征,判斷②;根據(jù)相關(guān)系數(shù)的意義即可判斷③;由回歸方程的系數(shù),可判斷④。
根據(jù)殘差的意義,可知當(dāng)殘差的平方和越小,模擬效果越好,所以①錯(cuò)誤;
當(dāng)個(gè)體差異明顯時(shí),選用分層抽樣法抽樣,所以②正確;
根據(jù)線性相關(guān)系數(shù)特征,當(dāng)相關(guān)系數(shù)越大,兩個(gè)變量的線性相關(guān)性越強(qiáng),所以③錯(cuò)誤;
根據(jù)回歸方程的系數(shù)為0.5,所以當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量增加0.5個(gè)單位.
綜上,②④正確,故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中,過點(diǎn)的直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為與曲線C相交于不同的兩點(diǎn)M,N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】謝爾賓斯基三角形(Sierpinski triangle)是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出.在一個(gè)正三角形中,挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的小三角形中又挖去一個(gè)“中心三角形”,我們用白色三角形代表挖去的部分,黑色三角形為剩下的部分,我們稱此三角形為謝爾賓斯基三角形.若在圖(3)內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自謝爾賓斯基三角形的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(kx+)ex﹣2x,若f(x)<0的解集中有且只有一個(gè)正整數(shù),則實(shí)數(shù)k的取值范圍為 ( 。
A. [ ,)B. (,]
C. [)D. [)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工企業(yè)2018年年底投入100萬元,購入一套污水處理設(shè)備。該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬元,此外,每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬元。設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費(fèi)用為(單位:萬元)
(1)用表示;
(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備。則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求的值;
(2)已知某班共有人,記這人生日至少有兩人相同的概率為,,將一年看作365天.
(i)求的表達(dá)式;
(ii)估計(jì)的近似值(精確到0.01).
參考數(shù)值:,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】工廠抽取了在一段時(shí)間內(nèi)生產(chǎn)的一批產(chǎn)品,測量一項(xiàng)質(zhì)量指標(biāo)值,繪制了如圖所示的頻率分布直方圖.
(1)計(jì)算該樣本的平均值,方差;(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)
(2)若質(zhì)量指標(biāo)值在之內(nèi)為一等品.
(i)用樣本估計(jì)總體,問該工廠一天生產(chǎn)的產(chǎn)品是否有以上為一等品?
(ii)某天早上、下午分別抽檢了50件產(chǎn)品,完成下面的表格,并根據(jù)已有數(shù)據(jù),判斷是否有的把握認(rèn)為一等品率與生產(chǎn)時(shí)間有關(guān)?
一等品個(gè)數(shù) | 非一等品個(gè)數(shù) | 總計(jì) | |
早上 | 36 | 50 | |
下午 | 26 | 50 | |
總計(jì) |
附:.
0.25 | 0.15 | 0.10 | 0.050 | 0.010 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 6.635 | 10.828 |
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,(1)小問5分,(2)小問7分)
如圖,橢圓的左、右焦點(diǎn)分別為過的直線交橢圓于兩點(diǎn),且
(1)若,求橢圓的標(biāo)準(zhǔn)方程
(2)若求橢圓的離心率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記焦點(diǎn)在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點(diǎn)為頂點(diǎn)作相似橢圓.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),且與橢圓僅有一個(gè)公共點(diǎn),試判斷的面積是否為定值(為坐標(biāo)原點(diǎn))?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com