7.一汽車銷售公司對開業(yè)5年來某種型號的汽車“五一”優(yōu)惠金額與銷售量之間的關(guān)系進行分析研究并做了記錄,得到如下資料.
日期第1年第2年第3年第4年第5年
優(yōu)惠金額x(千元)101113128
銷售量y(輛)2325302616
該公司所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是第1年與第5年的兩組數(shù)據(jù),請根據(jù)其余三年的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\hat y=\hat bx+\hat a$;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2輛,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
相關(guān)公式:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

分析 (1)根據(jù)表中數(shù)據(jù)計算$\overline{x}$、$\overline{y}$,求出回歸系數(shù),寫出線性回歸方程;
(2)由(1)中線性回歸方程求出x=10時與x=8時y的值,比較誤差即可.

解答 解:(1)根據(jù)表中數(shù)據(jù),計算$\overline{x}$=$\frac{1}{3}$×(11+13+12)=12,
$\overline{y}$=$\frac{1}{3}$×(25+30+26)=27,
$\sum_{i=1}^{3}$xiyi=(11×25+13×30+12×26)=977,
$\sum_{i=1}^{3}$${{x}_{i}}^{2}$=112+132+262=434,
∴$\hat b=\frac{{\sum_{i=1}^3{{x_i}{y_i}-3\overline x•\overline y}}}{{\sum_{i=1}^3{x_i^2-3{{\overline x}^2}}}}$=$\frac{977-3×12×27}{{434-3×{{12}^2}}}=2.5$,
$\hat a=\overline y-\hat b\overline x$=27-2.5×12=-3,
∴線性回歸方程是$\hat y=2.5x-3$;
(2)由(1)知:當(dāng)x=10時,y=2.5×10-3=22,誤差不超過2輛;
當(dāng)x=8時,y=2.5×8-3=17,誤差不超過2輛;
故所求得的線性回歸方程是可靠的.

點評 本題考查了線性回歸方程的求法與應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$(ω>0)的最小正周期為π.
(1)求ω的值及函數(shù)f(x)的單調(diào)減區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位,再向上平移1個單位長度,得到函數(shù)y=g(x)的圖象.若y=g(x)在[0,b](b>0)上至少含有10個零點,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一位手機用戶前四次輸入四位數(shù)字手機密碼均不正確,第五次輸入密碼正確,手機解鎖.事后發(fā)現(xiàn)前四次輸入的密碼中,每次都有兩個數(shù)字正確,但它們各自的位置均不正確.已知前四次輸入密碼分別為3406,1630,7364,6173,則正確的密碼中一定含有數(shù)字( 。
A.4,6B.3,6C.3,7D.1,7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱為“塹堵”,已知某“塹堵”的三視圖如圖所示,俯視圖中虛線平分矩形的面積,則該“塹堵”外接球的體積為$\frac{8\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一個放置在水平桌面上的正四棱柱的俯視圖如圖所示,其中α為銳角,則該幾何體的正視圖的面積的最大值為( 。
A.2或3B.2$\sqrt{3}$或3C.1或3D.2或2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c.
(1)若c=$\sqrt{6},A={45°}$,a=2,求C,b;
(2)若a=btanA,且B為鈍角,證明:B-A=$\frac{π}{2}$,并求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則該幾何體的體積等于( 。
A.8+8πB.8+6πC.6+8πD.6+6π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖是三角形ABC的直觀圖,△ABC平面圖形是直角三角形(填正三角形、銳角三角形、鈍角三角形、直角三角形或者等腰三角形)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知復(fù)數(shù)z滿足i(z+1)=-2+2i(i是虛數(shù)單位)
(1)求z的虛部;  
(2)若$ω=\frac{z}{1-2i}$,求|ω|2015

查看答案和解析>>

同步練習(xí)冊答案