17.某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期12月1日12月2日12月3日12月4日12月5日
溫差x(℃)101113128
發(fā)芽y(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,剩下的2組數(shù)據(jù)用于回歸方程檢驗.
(1)若選取的是12月1日與12月5日的2組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}=\stackrel{∧}x+\stackrel{∧}{a}$;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(3)請預測溫差為14℃的發(fā)芽數(shù).
其中
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{{x}^{\;}}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

分析 (1)根據(jù)所給的數(shù)據(jù),先做出x,y的平均數(shù),即做出本組數(shù)據(jù)的樣本中心點,根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫出線性回歸方程.
(2)根據(jù)估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,就認為得到的線性回歸方程是可靠的,根據(jù)求得的結(jié)果和所給的數(shù)據(jù)進行比較,得到所求的方程是可靠的.
(3)將x=14代入(1)中所得的回歸直線方程,即可得到溫差為14℃的預報值.

解答 解:(1)由數(shù)據(jù),求得$\overline{x}$=12,$\overline{y}$=27.
由公式,求得$\widehat$=2.5,$\widehat{a}$=27-2.5×12=-3
∴y關(guān)于x的線性回歸方程為y^=2.5x-3.
(2)當x=10時,$\stackrel{∧}{y}$=2.5×10-3=22,|22-23|<2;
同樣當x=8時,$\stackrel{∧}{y}$=2.5×8-3=17,|17-16|<2;
∴該研究所得到的回歸方程是可靠的.
(3)當x=14時,$\stackrel{∧}{y}$=2.5×14-3=32,即溫差為14℃的發(fā)芽數(shù)約為32顆.

點評 本題可選等可能事件的概率,考查線性回歸方程的求法,考查最小二乘法,考查估計驗算所求的方程是否是可靠的,是一個綜合題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=x3+ax2+bx(x≠0)只有一個零點x=3.
(I)求函數(shù)f(x)的解析式;
(II)若函數(shù)g(x)=f(x)+mlnx在區(qū)間[0,2]上有極值點,求m取值范圍
(III)是否存在兩個不等正數(shù)s,t(s<t),當x∈[s,t]時,函數(shù)f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有這樣的正數(shù)s,t,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知A、B是單位圓(O為圓心)上的兩個定點,且∠AOB=30°,若C為該圓上的動點,且$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),則xy的最大值為2-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若f(x)=$\frac{x}{{{{log}_{\frac{1}{2}}}(2x-1)}}$,則f(x)的定義域為( 。
A.$(\frac{1}{2},1)$B.$(\frac{1}{2},+∞)$C.$(\frac{1}{2},1)∪(1,+∞)$D.$(\frac{1}{2},2)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.某區(qū)實驗幼兒園對兒童記憶能力x與識圖能力y進行統(tǒng)計分析,得到如下數(shù)據(jù):
記憶能力x46810
識圖能力y3568
由表中數(shù)據(jù),求得線性回歸方程為y=$\frac{4}{5}$x+a,則a=(  )
A.0.1B.-0.1C.0.2D.-0.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.圓心為(1,-1),半徑為2的圓的標準方程為(x-1)2+(y+1)2=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.命題“?x∈R,x2+6ax+1<0”為假命題,則a的取值范圍是$[{-\frac{1}{3},\frac{1}{3}}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列說法錯誤的是( 。
A.已知a,b,m∈R,命題“若am2<bm2,則a<b”為真命題
B.命題“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x≤0”
C.命題“p且q”為真命題,則命題p和命題q均為真命題
D.“x>3”是“x>2”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.對數(shù)函數(shù)f(x)=(6m2+m-14)•log2x,則m=( 。
A.$\frac{3}{2}$或-$\frac{5}{3}$B.-$\frac{3}{2}$或$\frac{5}{3}$C.0或1D.1

查看答案和解析>>

同步練習冊答案