【題目】如圖,已知拋物線C頂點在坐標原點,焦點F在Y軸的非負半軸上,點是拋物線上的一點.
(1)求拋物線C的標準方程
(2)若點P,Q在拋物線C上,且拋物線C在點P,Q處的切線交于點S,記直線 MP,MQ的斜率分別為k1,k2,且滿足,當P,Q在C上運動時,△PQS的面積是否為定值?若是,求出△PQS的面積;若不是,請說明理由.
科目:高中數學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD//BC,∠ABC=,,∠ADC=,PA⊥平面ABCD且PA=.
(1)求直線AD到平面PBC的距離;
(2)求出點A到直線PC的距離;
(3)在線段AD上是否存在一點F,使點A到平面PCF的距離為.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為點,,其離心率為,短軸長為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點的直線與橢圓交于,兩點,過點的直線與橢圓交于,兩點,且,證明:四邊形不可能是菱形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:,點為直線上任一點,過點作拋物線的兩條切線,切點分別為,,
(1)證明,,三點的縱坐標成等差數列;
(2)已知當點坐標為時,,求此時拋物線的方程;
(3)是否存在點,使得點關于直線的對稱點在拋物線上,其中點滿足,若存在,求點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在中國北京世界園藝博覽會期間,某工廠生產、、三種紀念品,每一種紀念品均有精品型和普通型兩種,某一天產量如下表:(單位:個)
紀念品 | 紀念品 | 紀念品 | |
精品型 | |||
普通型 |
現采用分層抽樣的方法在這一天生產的紀念品中抽取個,其中種紀念品有個.
(1)求的值;
()從種精品型紀念品中抽取個,其某種指標的數據分別如下:、、、、,把這個數據看作一個總體,其均值為,方差為,求的值;
(3)用分層抽樣的方法在種紀念品中抽取一個容量為的樣木,從樣本中任取個紀念品,求至少有個精品型紀念品的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1中,AB=AA1=,AC=2,∠BAC=∠A1AC=45°,∠BAA1=60°,F為棱AC的中點,E在棱BC上,且BE=2EC.
(Ⅰ)求證:A1B∥平面EFC1;
(Ⅱ)求三棱柱ABC-A1B1C1的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com