分析 由已知及誘導公式可求cos($α+\frac{π}{6}$)的值,利用二倍角的余弦函數(shù)公式即可求解cos(2α+$\frac{π}{3}$)的值.
解答 解:∵sin(α-$\frac{π}{3}$)=$\frac{4}{5}$,
∴cos[$\frac{π}{2}$+(α-$\frac{π}{3}$)]=-sin(α-$\frac{π}{3}$)=-$\frac{4}{5}$,可得:cos($α+\frac{π}{6}$)=-$\frac{4}{5}$,
∴cos(2α+$\frac{π}{3}$)=2cos2($α+\frac{π}{6}$)-1=2×(-$\frac{4}{5}$)2-1=$\frac{7}{25}$.
故答案為:$\frac{7}{25}$.
點評 本題主要考查了誘導公式,二倍角的余弦函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了計算能力和轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 11 | B. | 12 | C. | 13 | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{16}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{4}$ | D. | $1-\frac{π}{16}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com