在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分別為矩形四條邊的中點,以HF、GE所在直線分別為x,y軸建立直角坐標系(如圖所示).若R、R′分別在線段0F、CF上,且.
(Ⅰ)求證:直線ER與GR′的交點P在橢圓:+=1上;
(Ⅱ)若M、N為橢圓上的兩點,且直線GM與直線GN的斜率之積為,求證:直線MN過定點;并求△GMN面積的最大值.
詳見解析;直線MN過定點(0,-3),△GMN面積的最大值.
解析試題分析:先計算出E、R、G、R′各點坐標,得出直線ER與GR′的方程,解得其交點坐標 代入滿足橢圓方程即可; 先討論直線MN的斜率不存在時的情況;再討論斜率存在時,用斜截式設(shè)出直線MN方程.與橢圓方程聯(lián)立,用“設(shè)而不求”的方法通過韋達定理得出b為定值-3或1,又當b=1時,直線GM與直線GN的斜率之積為0,所以舍去.從而證明出MN過定點(0,-3).最后算出點到直線的距離及MN的距離,得出△GMN面積是一個關(guān)于的代數(shù)式,由及知:,用換元法利用基本不等式求出△GMN面積的最大值是.
試題解析:(Ⅰ)∵,∴, 1分
又 則直線的方程為 ① 2分
又 則直線的方程為 ②
由①②得
∵
∴直線與的交點在橢圓上 4分
(Ⅱ)①當直線的斜率不存在時,設(shè)
不妨取 ∴ ,不合題意 5分
②當直線的斜率存在時,設(shè)
聯(lián)立方程 得
則
7分
又
即
將代入上式得
解得或(舍)
∴直線過定點 10分
∴,點到直線的距離為
∴
由及知:,令 即
∴ 當且僅當時, 13分
考點:1.直線的方程;2.解析幾何;3.基本不等式.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com