12.已知數(shù)列{an}滿足a1=1,an+1=2an+1.
(Ⅰ)證明:{an+1}是等比數(shù)列,并求{an}的通項公式;
(Ⅱ)記${b_n}=\frac{1}{{{{[{{log}_2}({a_n}+1)]}^2}+{{log}_2}({a_n}+1)}}$,設(shè)Sn為數(shù)列{bn}的前項和,證明:Sn<1.

分析 (Ⅰ)因為an+1=2an+1,所有$\frac{{{a_{n+1}}+1}}{{{a_n}+1}}=\frac{{2{a_n}+1+1}}{{{a_n}+1}}=2$,即{an+1}是首項為2,公比為2的等比數(shù)列.即可求得通項.
(Ⅱ)${b_n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,累加即可求和,證明結(jié)論.

解答 解:(Ⅰ)因為an+1=2an+1,所有$\frac{{{a_{n+1}}+1}}{{{a_n}+1}}=\frac{{2{a_n}+1+1}}{{{a_n}+1}}=2$.…(2分)
又a1+1=2,所以{an+1}是首項為2,公比為2的等比數(shù)列.…(4分)
${a_n}+1=2•{2^{n-1}}={2^n}$,因此求{an}得通項公式${a_n}={2^n}-1$.…(6分)
(Ⅱ)${b_n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
所以${S_n}=(\frac{1}{1}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…+(\frac{1}{n}-\frac{1}{n+1})=1-\frac{1}{n+1}$. …(10分)
因為n∈N*,所以Sn<1.…(12分)

點評 本題考查了利用數(shù)列遞推式求通項、考查了裂項求和,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.y=3sinx的值域是[-3,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若關(guān)于x的不等式x2-mx<0的解集為{x|0<x<2},則m的值為(  )
A.1B.2C.-1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.計算$C_5^4+C_6^4+C_7^4+C_8^4$等于( 。
A.125B.126C.120D.132

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)=2|x-a|是定義在R上的偶函數(shù),則下列不等關(guān)系正確的是( 。
A.f(log23)<f(log0.55)<f(a)B.f(log0.55)<f(log23)<f(a)
C.f(a)<f(log23)<f(log0.55)D.f(a)<f(log0.55)<f(log23)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.《漢字聽寫大會》不斷創(chuàng)收視新高,為了避免“書寫危機”弘揚傳統(tǒng)文化,某市對全市10萬名市民進行了漢字聽寫測試,調(diào)查數(shù)據(jù)顯示市民的成績服從正態(tài)分布N(168,16).現(xiàn)從某社區(qū)居民中隨機抽取50名市民進行聽寫測試,發(fā)現(xiàn)被測試市民正確書寫漢字的個數(shù)全部在160到184之間,將測試結(jié)果按如下方式分成六組:第一組[160,164),第二組[164,168),…,第六組[180,184),如圖是按上述分組方法得到的頻率分布直方圖.
(1)試評估該社區(qū)被測試的50名市民的成績在全市市民中成績的平均狀況及這50名市民成績在172個以上(含172個)的人數(shù);
(2)在這50名市民中成績在172個以上(含172個)的人中任意抽取2人,該2人中成績排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):若η~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544,P(μ-3σ<X<μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列說法中正確的是(  )
A.當a>1時,函數(shù)y=ax是增函數(shù),因為2>l,所以函數(shù)y=2x是增函數(shù).這種推理是合情推理
B.在平面中,對于三條不同的直線a,b,c,若a∥b,b∥c,則a∥c,將此結(jié)論放到空間中也是如此.這種推理是演繹推理
C.若分類變量X與Y的隨機變量K2的觀測值k越小,則兩個分類變量有關(guān)系的把握性越小
D.$\int_{-1}^1{{x^3}dx=\frac{1}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知角α的終邊過點A(3,4),則cos(π+2α)=$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時間約為( 。┤眨ńY(jié)果保留一位小數(shù).參考數(shù)據(jù):lg2≈0.30,lg3≈0.48)
A.1.3B.1.5C.2.6D.2.8

查看答案和解析>>

同步練習(xí)冊答案