6.已知正項(xiàng)數(shù)列{an}滿足$\frac{{a}_{n+1}}{{a}_{n-1}}$+$\frac{{a}_{n-1}}{{a}_{n+1}}$=$\frac{4{{a}_{n}}^{2}}{{a}_{n+1}{a}_{n-1}}$-2(n≥2,n∈N*),且a6=11,前9項(xiàng)和為81.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{lgbn}的前n項(xiàng)和為lg(2n+1),記cn=$\frac{{a}_{n}•_{n}}{{2}^{n+1}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

分析 (Ⅰ)由正項(xiàng)數(shù)列{an}滿足$\frac{{a}_{n+1}}{{a}_{n-1}}$+$\frac{{a}_{n-1}}{{a}_{n+1}}$=$\frac{4{{a}_{n}}^{2}}{{a}_{n+1}{a}_{n-1}}$-2(n≥2,n∈N*),得${a_{n+1}}^2+{a_{n-1}}^2=4{a_n}^2-2{a_{n+1}}{a_{n-1}}$,整理得an+1+an-1=2an,可得{an}為等差數(shù)列.再利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.
(II)當(dāng)n=1時(shí),lgb1=lg3,即b1=3.當(dāng)n≥2時(shí),lgb1+lgb2+…+lgbn=lg(2n+1),lgb1+lgb2+…+lgbn-1=lg(2n-1),
作差可得bn=$\frac{2n+1}{2n-1}$,(n≥2).cn=$\frac{{a}_{n}•_{n}}{{2}^{n+1}}$=$\frac{2n+1}{{2}^{n+1}}$,再利用“錯(cuò)位相減法”與等比數(shù)列的求和公式即可得出.

解答 解:(Ⅰ)由正項(xiàng)數(shù)列{an}滿足$\frac{{a}_{n+1}}{{a}_{n-1}}$+$\frac{{a}_{n-1}}{{a}_{n+1}}$=$\frac{4{{a}_{n}}^{2}}{{a}_{n+1}{a}_{n-1}}$-2(n≥2,n∈N*),得${a_{n+1}}^2+{a_{n-1}}^2=4{a_n}^2-2{a_{n+1}}{a_{n-1}}$,
整理得an+1+an-1=2an,所以{an}為等差數(shù)列.
由a6=11,前9項(xiàng)和為81,得a1+5d=11,$9{a}_{1}+\frac{9×8}{2}$d=81,
解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
(II)當(dāng)n=1時(shí),lgb1=lg3,即b1=3.
當(dāng)n≥2時(shí),lgb1+lgb2+…+lgbn=lg(2n+1)…①,
lgb1+lgb2+…+lgbn-1=lg(2n-1)…②
①-②,得$lg{b_n}=lg(2n+1)-lg(2n-1)=lg\frac{2n+1}{2n-1}$,
∴bn=$\frac{2n+1}{2n-1}$,(n≥2).
b1=3滿足上式,因此bn=$\frac{2n+1}{2n-1}$,(n≥2).
cn=$\frac{{a}_{n}•_{n}}{{2}^{n+1}}$=$\frac{2n+1}{{2}^{n+1}}$,
∴數(shù)列{cn}的前n項(xiàng)和Tn=$\frac{3}{{2}^{2}}+\frac{5}{{2}^{3}}$+…+$\frac{2n-1}{{2}^{n}}$+$\frac{2n+1}{{2}^{n+1}}$,
又2Tn=$\frac{3}{2}+\frac{5}{{2}^{2}}$+…+$\frac{2n+1}{{2}^{n}}$,
以上兩式作差,得Tn=$\frac{3}{2}$+2$(\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}})$-$\frac{2n+1}{{2}^{n+1}}$,
${T_n}=\frac{3}{2}+(\frac{1}{2}+\frac{1}{2^2}+…+\frac{1}{{{2^{n-1}}}})-\frac{2n+1}{{{2^{n+1}}}}=\frac{3}{2}+\frac{{\frac{1}{2}-\frac{1}{2^n}}}{{1-\frac{1}{2}}}-\frac{2n+1}{{{2^{n+1}}}}$,
因此,Tn=$\frac{5}{2}$-$\frac{2n+5}{{2}^{n+1}}$.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知圓C:x2+y2=1,直線l:y=k(x+2),在[-1,1]上隨機(jī)選取一個(gè)數(shù)k,則事件“直線l與圓C相離
”發(fā)生的概率為( 。
A.$\frac{1}{2}$B.$\frac{2-\sqrt{2}}{2}$C.$\frac{3-\sqrt{3}}{3}$D.$\frac{2-\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知非零向量$\overrightarrow{a}$,$\overrightarrow$,使得|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|成立的一個(gè)充分非必要條件是(  )
A.$\overrightarrow{a}$∥$\overrightarrow$B.$\overrightarrow{a}$+2$\overrightarrow$=0C.$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow}{|\overrightarrow|}$=0D.2$\overrightarrow{a}$+$\overrightarrow$=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓x2+2y2=m(m>0),以橢圓內(nèi)一點(diǎn)M(2,1)為中點(diǎn)作弦AB,設(shè)線段AB的中垂線與橢圓相交于C,D兩點(diǎn).
(Ⅰ)求橢圓的離心率;
(Ⅱ)試判斷是否存在這樣的m,使得A,B,C,D在同一個(gè)圓上,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,b=7,sinA-sinC=$\frac{3\sqrt{3}}{14}$.
(Ⅰ)求a;
(Ⅱ)求cos(2A-B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知三棱錐O-ABC中,A,B,C三點(diǎn)均在球心O的球面上,且AB=BC=1,∠ABC=120°,若球O的體積為$\frac{256π}{3}$,則三棱錐O-ABC的體積是$\frac{\sqrt{5}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).傾斜角為$\frac{π}{3}$,且經(jīng)過定點(diǎn)P(0,1)的直線l與曲線C交于M,N兩點(diǎn)
(Ⅰ)寫出直線l的參數(shù)方程的標(biāo)準(zhǔn)形式,并求曲線C的直角坐標(biāo)方程;
(Ⅱ)求$\frac{1}{|PM|}$+$\frac{1}{|PN|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)$f(x)=\frac{1}{2}cos2x+3a(sinx-cosx)+(4a-1)x$在$[-\frac{π}{2},0]$上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為( 。
A.$[\frac{1}{7},1]$B.$[-1,\frac{1}{7}]$C.$(-∞,-\frac{1}{7}]∪[1,+∞)$D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知一個(gè)等差數(shù)列的前三項(xiàng)分別為-1,x,5,則它的第五項(xiàng)為11.

查看答案和解析>>

同步練習(xí)冊(cè)答案