(本題滿(mǎn)分14分)已知數(shù)列中,,,其前項(xiàng)和滿(mǎn)足(,).
(Ⅰ)求證:數(shù)列為等差數(shù)列,并求的通項(xiàng)公式;
(Ⅱ)設(shè), 求數(shù)列的前項(xiàng)和 ;
(Ⅲ)設(shè)(為非零整數(shù),),試確定的值,使得對(duì)任意,有恒成立.
(Ⅰ). (Ⅱ)
(Ⅲ)存在,使得對(duì)任意,都有.
解析試題分析:(1)利用數(shù)列的前n項(xiàng)和與通項(xiàng)an之間的關(guān)系,求出該數(shù)列的通項(xiàng)公式是解決本題的關(guān)鍵;注意分類(lèi)討論思想的運(yùn)用;
(2)利用第一問(wèn)中所求的公式表示出數(shù)列{bn}的通項(xiàng)公式,根據(jù)數(shù)列的通項(xiàng)公式選擇合適的方法----錯(cuò)位相減法求出數(shù)列{bn}的前n項(xiàng)和Tn.
(3)要使得即為,對(duì)于n分為奇數(shù)和偶數(shù)來(lái)得到。
解:(Ⅰ)由已知,(,),
即(,),且.
∴數(shù)列是以為首項(xiàng),公差為1的等差數(shù)列.∴. …………4分
(Ⅱ)由(Ⅰ)知 它的前項(xiàng)和為
(Ⅲ)∵,∴,
∴恒成立,
∴恒成立.
(。┊(dāng)為奇數(shù)時(shí),即恒成立當(dāng)且僅當(dāng)時(shí),有最小值為1,∴.
(ⅱ)當(dāng)為偶數(shù)時(shí),即恒成立當(dāng)且僅當(dāng)時(shí),有最大值,∴.即,又為非零整數(shù),則.
綜上所述,存在,使得對(duì)任意,都有.…………14分
考點(diǎn):本試題主要考查了數(shù)列的前n項(xiàng)和與通項(xiàng)an之間的關(guān)系,考查等差數(shù)列的判定,考查學(xué)生分類(lèi)討論思想.運(yùn)用數(shù)列的通項(xiàng)公式選取合適的求和方法求出數(shù)列{bn}的前n項(xiàng)和,體現(xiàn)了化歸思想.
點(diǎn)評(píng):解決該試題的關(guān)鍵是能將已知中前n項(xiàng)和關(guān)系式,通過(guò)通項(xiàng)公式與前n項(xiàng)和的關(guān)系得到通項(xiàng)公式的求解,并合理選用求和方法得到和式。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)在數(shù)列中,,并且對(duì)于任意n∈N*,都有.
(1)證明數(shù)列為等差數(shù)列,并求的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,求使得的最小正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)已知是等比數(shù)列的前項(xiàng)和,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列是單調(diào)遞減數(shù)列,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
已知數(shù)列{}滿(mǎn)足,
(I)寫(xiě)出,并推測(cè)的表達(dá)式;
(II)用數(shù)學(xué)歸納法證明所得的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
已知曲線:,數(shù)列的首項(xiàng),且當(dāng)時(shí),點(diǎn)恒在曲線上,數(shù)列滿(mǎn)足。
(1)試判斷數(shù)列是否是等差數(shù)列?并說(shuō)明理由;
(2)求數(shù)列和的通項(xiàng)公式;
(3)設(shè)數(shù)列滿(mǎn)足,試比較數(shù)列的前項(xiàng)和與2的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,滿(mǎn)足.
(1)求;
(2)令,求數(shù)列的前項(xiàng)和.
(3)設(shè),若對(duì)任意的正整數(shù),均有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某少數(shù)民族的刺繡有著悠久的歷史,如下圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個(gè)圖形包含個(gè)小正方形.
(1)求出的值;
(2)利用合情推理的“歸納推理思想”,歸納出與之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出的表達(dá)式;
(3)求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com