6.設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2+|x-a|+1,x∈R.
(1)討論f(x)的奇偶性; 
(2)若x≥a,求f(x)的最小值.

分析 (1)討論a=0,a≠0時(shí),運(yùn)用奇偶性定義,即可判斷;
(2)運(yùn)用配方法,對(duì)a討論,若a≤-$\frac{1}{2}$,a>-$\frac{1}{2}$,根據(jù)單調(diào)性,即可求得最小值.

解答 解:(1)當(dāng)a=0時(shí),函數(shù)f(-x)=(-x)2+|-x|+1=f(x),此時(shí)f(x)為偶函數(shù).
當(dāng)a≠0時(shí),f(a)=a2+1,f(-a)=a2+2|a|+1,f(-a)≠f(a).
且f(-x)=x2+|-x-a|+1≠±f(x),
此時(shí)函數(shù)f(x)為非奇非偶函數(shù).
(2)當(dāng)x≥a時(shí),函數(shù)$f(x)={x^2}+x-a+1={(x+\frac{1}{2})^2}-a+\frac{3}{4}$.
若a≤-$\frac{1}{2}$,則函數(shù)f(x)在[a,+∞)上的最小值為$f(-\frac{1}{2})=\frac{3}{4}-a$.
若a>-$\frac{1}{2}$,則函數(shù)f(x)在[a,+∞)上單調(diào)遞增,
從而,函數(shù)f(x)在[a,+∞)上的最小值為f(a)=a2+1.
綜上,當(dāng)a≤-$\frac{1}{2}$時(shí),函數(shù)f(x)的最小值是$\frac{3}{4}$-a.
當(dāng)a>-$\frac{1}{2}$時(shí),函數(shù)f(x)的最小值是a2+1.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性和最值的求法,注意運(yùn)用分類討論的思想方法,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某公司從大學(xué)招收畢業(yè)生,經(jīng)過綜合測(cè)試,錄用了14名男生和6名女生,這20名畢業(yè)生的測(cè)試成績(jī)?nèi)缜o葉圖所示(單位:分).公司規(guī)定:成績(jī)?cè)?80分以上者到甲部門工作,180分以下者到乙部門工作,另外只有成績(jī)高于180分的男生才能擔(dān)任助理工作.                          
(1)如果用分層抽樣的方法從甲部門人選和乙部門人選中選取8人,再?gòu)倪@8人中選3人,那么至少有一人是甲部門人選的概率是多少?
(2)若從所有甲部門人選中隨機(jī)選3人,用X表示所選人員中能擔(dān)任助理工作的人數(shù),寫出X的分布列,并求出X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在五面體ACDEF中,已知DE⊥平面ABCD,AD∥BC,∠BAD=60°,AB=4,DE=EF=2.
(1)求證:BC∥EF;
(2)求三棱錐B-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點(diǎn)為F(2,0),設(shè)A、B為雙曲線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),AF的中點(diǎn)為M,BF的中點(diǎn)為N,若原點(diǎn)O在以線段MN為直徑的圓上,直線AB的斜率為$\frac{{3\sqrt{7}}}{7}$,則雙曲線的離心率為( 。
A.4B.2C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,a=2,b=3,$cosC=\frac{1}{3}$,則其外接圓的半徑為( 。
A.$\frac{9\sqrt{2}}{2}$B.$\frac{9\sqrt{2}}{4}$C.$\frac{9\sqrt{2}}{8}$D.9$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.兩條平行直線l1:x+2y+5=0和l2:4x+8y+15=0的距離為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)F1,F(xiàn)2為雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn),P,Q分別為雙曲線左、右支上的點(diǎn),若$\overrightarrow{Q{F_2}}$=2$\overrightarrow{P{F_1}}$,且$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$═0,則雙曲線的離心率為( 。
A.$\frac{{\sqrt{15}}}{3}$B.$\frac{{\sqrt{17}}}{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中既是奇函數(shù)又在定義域上為增函數(shù)的是( 。
A.f(x)=3x+1B.f(x)=$\frac{1}{x}$C.f(x)=1-$\frac{1}{x}$D.f(x)=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.命題“?x∈R,x≤1或x2>4”的否定為“?x∈R,x>1且x2≤4”.

查看答案和解析>>

同步練習(xí)冊(cè)答案