A. | $\frac{{\sqrt{15}}}{3}$ | B. | $\frac{{\sqrt{17}}}{3}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{{\sqrt{7}}}{2}$ |
分析 設(shè)P(x,y),Q(x1,y1),F(xiàn)1(-c,0),F(xiàn)2(c,0),由$\overrightarrow{Q{F_2}}$=2$\overrightarrow{P{F_1}}$,得x1=3c+2x,y1=2y…①
由$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$═0,得x2-c2+y2=0,②又$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,③由②③可得P(-$\frac{a}{c}\sqrt{^{2}+{c}^{2}}$,$\frac{^{2}}{c}$),代入①得Q(3c-$\frac{2a\sqrt{^{2}+{c}^{2}}}{c}$,$\frac{2^{2}}{c}$),將點(diǎn)Q坐標(biāo)代入③得3c2+a2=4a$\sqrt{^{2}+{c}^{2}}$,即可求解.
解答 解:設(shè)P(x,y),Q(x1,y1),∵F1(-c,0),F(xiàn)2(c,0),
∴$\overrightarrow{Q{F_2}}$=(c-x1,-y1),$\overrightarrow{P{F_1}}$=(-c-x,-y)
∵$\overrightarrow{Q{F_2}}$=2$\overrightarrow{P{F_1}}$,∴(c-x1,-y1)=2(-c-x,-y),
∴c-x1=2(-c-x),-y1=-2y,
∴x1=3c+2x,y1=2y…①
∴$\overrightarrow{{F}_{1}P}$=(x+c,y),$\overrightarrow{{F}_{2}P}$=(x-c,y),
∵$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$═0,∴x2-c2+y2=0,②
又∵$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,③
由②③可得P(-$\frac{a}{c}\sqrt{^{2}+{c}^{2}}$,$\frac{^{2}}{c}$),代入①得Q(3c-$\frac{2a\sqrt{^{2}+{c}^{2}}}{c}$,$\frac{2^{2}}{c}$)
將點(diǎn)Q坐標(biāo)代入③得3c2+a2=4a$\sqrt{^{2}+{c}^{2}}$,⇒
9c4-26a2c2+17a4=0⇒9e4-26e2+17=0⇒
e2=1(舍去),e2=$\frac{17}{9}$⇒e=$\frac{\sqrt{17}}{3}$.
故選:B
點(diǎn)評 本題考查了雙曲線的離心率,轉(zhuǎn)化思想及運(yùn)算能力是解題的關(guān)鍵,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | -6 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(16+6\sqrt{2})c{{m}^{2}}^{\;}$ | B. | 22cm2 | C. | $(12+6\sqrt{2})c{m}^{2}$ | D. | $(18+2\sqrt{3})c{m}^{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com