15.已知$(1-\frac{1}{x}){(1+x)^7}$的展開式中項(xiàng)x4的系數(shù)為14.

分析 把(1+x)7按照二項(xiàng)式定理展開,可得 $(1-\frac{1}{x}){(1+x)^7}$的展開式中項(xiàng)x4的系數(shù).

解答 解:∵$(1-\frac{1}{x}){(1+x)^7}$=(1-$\frac{1}{x}$)•(1+${C}_{7}^{1}$•x+${C}_{7}^{2}$•x2+…+${C}_{7}^{7}$•x7),
∴$(1-\frac{1}{x}){(1+x)^7}$的展開式中項(xiàng)x4的系數(shù)為${C}_{7}^{4}$-${C}_{7}^{5}$=35-21=14,
故答案為:14.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|x-a|.
(1)若a=2,解不等式:f(x)≥3-|x-1|;
(2)若f(x)≤1的解集為[2,4],且m+2n=a(m>0,n>0),求m2+4n2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知在(-∞,1]上遞減的函數(shù)f(x)=x2-2tx+1,且對任意的x1,x2∈[0,t+1],總有|f(x1)-f(x2)|≤2,則實(shí)數(shù)t的取值范圍為(  )
A.$[-\sqrt{2},\sqrt{2}]$B.$[1,\sqrt{2}]$C.[2,3]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知定點(diǎn)E(-1,0),F(xiàn)(1,0),動點(diǎn)P(x,y)滿足|PE|+|PF|=4,記動點(diǎn)P的軌跡為曲線G.
(Ⅰ)求曲線G的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)F作不垂直于坐標(biāo)軸的直線l,交曲線G于A、B兩點(diǎn),點(diǎn)C是點(diǎn)A關(guān)于x軸的對稱點(diǎn).
(i)求證:直線BC恒過x軸上的定點(diǎn)N,并求出定點(diǎn)N的坐標(biāo);
(ii)求△ABN的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列各角中是第二象限角的個(gè)數(shù)為( 。
(1)125°(2)195°(3)-200°(4)179°.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)數(shù)列{an}滿足:a1=1,a2=$\frac{5}{3}$,an+2=$\frac{5}{3}$an+1-$\frac{2}{3}$an (n=1,2,…).令bn=an+1-an
(1)求證:數(shù)列{bn}是等比數(shù)列,并求bn
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:?x>0,都有l(wèi)ogax<0(a>0且a≠1),命題q:?x∈Q,都有x∈R,則下列命題中為真命題的是(  )
A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知方程$\frac{x^2}{m}+\frac{y^2}{m-4}=1$表示焦點(diǎn)在x軸上的雙曲線,則m的取值范圍是(0,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=|x+1|+|x-1|.
(1)若?x0∈R,使得不等式f(x0)≤m成立,求實(shí)數(shù)m的最小值M;
(2)在(1)的條件下,若正數(shù)a,b滿足3a+b=m,求$\frac{1}{2a}+\frac{1}{a+b}$的最小值.

查看答案和解析>>

同步練習(xí)冊答案