20.設(shè)數(shù)列{an}滿足:a1=1,a2=$\frac{5}{3}$,an+2=$\frac{5}{3}$an+1-$\frac{2}{3}$an (n=1,2,…).令bn=an+1-an
(1)求證:數(shù)列{bn}是等比數(shù)列,并求bn;
(2)求數(shù)列{an}的通項公式.

分析 (1)把已知數(shù)列遞推式變形,即可證明數(shù)列{bn}是等比數(shù)列,再由等比數(shù)列的通項公式求bn;
(2)把bn代入bn=an+1-an,然后利用累加法求得數(shù)列{an}的通項公式.

解答 (1)證明:∵bn+1=an+2-an+1=$(\frac{5}{3}{a}_{n+1}-\frac{2}{3}{a}_{n})$-an+1=$\frac{2}{3}$(an+1-an)=$\frac{2}{3}$bn
∴$\frac{_{n+1}}{_{n}}$=$\frac{2}{3}$ (n=1,2,3,…),即{bn}是等比數(shù)列,公比q=$\frac{2}{3}$,
首項b1=a2-a1=$\frac{2}{3}$.∴bn=$(\frac{2}{3})^{n}$;
(2)解:an+1-an=$(\frac{2}{3})^{n}$.
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1
=1+b1+b2+…+bn-1=1+$\frac{2}{3}+(\frac{2}{3})^{2}$+…+($\frac{2}{3}$)n-1=$\frac{1×[1-(\frac{2}{3})^{n}]}{1-\frac{2}{3}}=3[1-(\frac{2}{3})^{n}]$.

點評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了等比數(shù)列前n項和的求法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù):①f(x)=2sin(2x+$\frac{π}{3}$);②f(x)=2sin(2x-$\frac{π}{6}$);③f(x)=2sin($\frac{1}{2}$x+$\frac{π}{3}$);④f(x)=2sin(2x-$\frac{π}{3}$),其中,最小正周期為π且圖象關(guān)于直線x=$\frac{π}{3}$對稱的函數(shù)序號是②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知1=x2+4y2-2xy(x<0,y<0),則x+2y的取值范圍為[-2,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=alnx-x,g(x)=aex-x,其中a為正實數(shù).
(Ⅰ)若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(2,+∞)上有最小值,求a的取值范圍;
(Ⅱ)若函數(shù)f(x)與g(x)都沒有零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知$(1-\frac{1}{x}){(1+x)^7}$的展開式中項x4的系數(shù)為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,a=3,b=5,$cosA=\frac{{2\sqrt{2}}}{3}$,則sinB=(  )
A.$\frac{1}{5}$B.$\frac{5}{9}$C.$\frac{{\sqrt{5}}}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)=sin(x+φ)是奇函數(shù),則φ的值可能是(  )
A.$\frac{3}{4}π$B.$\frac{1}{4}π$C.$\frac{1}{2}π$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.點P到橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$上的任意一點,F(xiàn)1,F(xiàn)2是它的兩個焦點,O為坐標(biāo)原點,$\overrightarrow{OQ}=\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}$,則動點Q的軌跡方程是$\frac{x^2}{16}+\frac{y^2}{12}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓的中心在坐標(biāo)原點,右焦點F的坐標(biāo)為(3,0),直線L:x+2y-2=0交橢圓于A.B兩點,線段AB的中點為$M(1,\frac{1}{2})$;
(1)求橢圓的方程;
(2)動點N滿足NA⊥NB,求動點N的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案